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Abstract--The nonlinear evolution of a continuous spectrum of travelling waves resulting from the growth 
of unstable disturbances in fully-developed fluid flows is studied. The disturbance is represented in its 
most general form by a Fourier integral over all possible wavenumbers. The Fourier components of the 
disturbance quantities are expanded in a series of the linear-stability eigenfunctions, and a set of integro- 
differential equations for the amplitude density function of a continuous spectrum is derived. No approxi- 
mations are involved in this reduction ; hence, a numerical solution of the integro-differential equations is 
an exact solution of the Navier-Stokes equations. Numerical integration of the integro-differential equa- 
tions with different initial conditions shows that the equilibrium state of the flow is not unique after the 
first bifurcation point, but depends on the waveform of the initial disturbance or, equivalently, on ambient 
noise which, cannot always be controlled in practical situations. Multiple equilibrium states are found to 
occur at the same value of the dynamic similarity parameters ; this implies that any property transported 
by the fluid can at best be determined within a limit of uncertainty associated with nonuniqueness. A 
perturbation expansion with multiple time scales is used to show that the equations describing the evolution 
of monochromatic waves and slowly-varying wavepackets in classical weakly nonlinear theories are special 
limiting cases of the integro-differential equations near the onset of linear instability. The range of validity 
of the weakly nonlinear expansions is examined for mixed-convection flow in a heated vertical annulus. 
The results confirm that weakly nonlinear theories fail to give an adequate description of the physics of 
the flow even near the onset of linear instability. This is because these theories consider only the most 
unstable mode, and neglect the contribution from other eigenmodes which can have a large effect on the 
mean flow distortion. Without considering the leading-order effect of the mean-flow distortion, classical 
weakly nonlinear instability theories fail to account for proper energy exchanges. The numerical results of 
the integro-differential equations for the amplitude density function are compared with a direct numerical 
simulation of the Navier-Stokes equations using a Fourier~Chebyshev spectral method. Complete agree- 
ment is found between the two numerical solutions. The solution of the integro-differential equations is 
simpler than and requires only a small fraction of the computer time necessary for solving the Navier- 
Stokes equations by a spectral method. The current formulation presents an efficient algorithm to solve 

the Navier-Stokes equations. 

1. INTRODUCTION 

This s tudy concerns  nonl inear  interact ions among  the 
travell ing wave componen t s  of  a con t inuous  spectrum 
in fluid dynamics.  Travell ing waves frequently arise in 
fluid dynamics  due to the growth of  unstable  dis- 
turbances.  The  crilical wavenumber  of  the d is turbance  
at  the onset  of  instabil i ty may  be predicted by a 
linearized analysi,;. The  nonl inear  growth  of  small- 
ampl i tude  d is turbances  in the ne ighbourhood  of  the 
b i furca t ion  point  has  commonly  been studied using a 
pe r tu rba t ion  method,  as pioneered by Stuar t  [1] and  
W a t s o n  [2]. The weakly nonl inear  theories of  Stuar t  
and  W a t s o n  consider  d is turbances  of  travelling waves 
which are spatially periodic with wavelength 2n/k, and  
study the generat ions of  harmonics  (2k, 3k, etc.) of  
the fundamenta l  ;mode and  dis tor t ion of  the mean  
flow due to nonl inear  interactions.  They are restricted 
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to monochroma t i c  waves. Linear  instabil i ty analysis, 
however,  indicates tha t  a con t inuous  finite b a n d  of  
wavenumbers  can  grow simultaneously.  Stewartson 
and  Stuar t  [3] extended the weakly nonl inear  theory 
of  m o n o c h r o m a t i c  waves to incorpora te  a slow spatial  
modu la t ion  of  the waves due to the in teract ion of  a 
small con t inuous  band  of  wavenumbers .  They derived 
an  equa t ion  to describe the spat io- temporal  evolut ion 
of  the envelope of  the slowly varying wavepacket ,  
which is similar to the equa t ion  for the rmal  convect ion 
derived previously by Newell and  Whi t ehead  [4] and  
Segel [5]. The  weakly nonl inear  theory  of  wavepackets  
is, however,  valid only when  the band  of  wavenumbers  
tha t  can grow according to l inear theory is so small 
tha t  no  energy can  exchange a m o n g  the wave com- 
ponents  in the wavepacket .  In  this paper,  an  integral  
formal ism is used to investigate the nonl inear  inter- 
act ions a m o n g  waves of  all possible wavenumbers .  

Mixed convect ion  flow in a heated  vertical annulus  
is used as a model  problem to study the nonl inear  
interact ions among  travelling waves. Recent  work has 
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NOMENCLATURE 

A m amplitude density functions 
C constant determining average axial 

velocity of isothermal flow through 
annulus 

d distance between cylinders 
E disturbance kinetic energy 
E(k) kinetic energy of Fourier mode with 

wavenumber k 
e. unit vector in z direction 
g gravitational acceleration 
G axial pressure gradient 
h local heat transfer coefficient 
k axial wavenumber 
k f  final equilibrium wavenumber 
/~ thermal conductivity of fluid 
L linear operators 
N number of waves or nonlinear 

operators 
Nu Nusselt number 
Nuz local Nusselt number 
p pressure 
Pr Prandtl number 
qw local heat flux at inner wall 
Ra Rayleigh number 
Re Reynolds number 
r radial coordinate 
r 1 radius of inner cylinder (dimensional) 
r2 radius of outer cylinder (dimensional) 
r~ dimensionless radius of inner cylinder 
ro dimensionless radius of outer cylinder 
t time 
T dimensional temperature 
T b bulk temperature of fluid 
To upstream reference temperature 

Tw temperature of inner wall 
u radial velocity 

discrete Fourier transform of radial 
velocity 

gm radial velocity predicted by linear 
stability theory 

u = (u, v, w), velocity vector 
v azimuthal velocity 
~7 m azimuthal velocity predicted by linear 

stability theory 
w axial velocity 
~t~ m axial velocity predicted by linear 

stability theory 
W average axial velocity for isothermal 

flow through an annulus 
W0 fully developed axial velocity profile 
y normalized radial coordinate 
z axial coordinate. 

Greek symbols 
fl coefficient of thermal expansion 
t/ radius ratio of annulus 
x thermal diffusivity of fluid 
2 wavelength of computational box 
# axial temperature gradient 
v kinematic viscosity of  fluid 
0 dimensionless temperature 
00 fully developed temperature 

distribution 
p density of fluid 
n =P+½1ul 2 
~b azimuthal angle 
~0 = V ' u .  

shown that parallel fully developed mixed convection 
flow in a heated vertical ducts is highly unstable due 
to thermally induced instabilities [6-13]. The presence 
of instabilities in nonisothermal flows in heated ver- 
tical ducts has been observed experimentally by Han- 
ratty et al. [14], Kemeny and Somers [15] and Scheele 
and Hanratty [16]. These instabilities lead to sig- 
nificant increases in the heat transfer rates above those 
predicted by parallel-flow models. When the buoy- 
ancy forces aid the fluid motion, they observed that 
the initial transition resulted in a new equilibrium 
periodic flow pattern. However, when the buoyancy 
forces oppose the fluid motion, the transition to tur- 
bulence is abrupt. Thus, the observed bifurcation is 
supercritical when buoyancy forces aid the fluid 
motion, and may be subcritical when the buoyancy 
forces oppose the fluid motion. Similar instabilities 
have been observed by Maitra and Subba Raju [17] 
for flow in a heated vertical annulus. 

The evolution of finite-amplitude disturbances in 
this flow situation was studied by Yao and Rogers 

[10] using weakly nonlinear instability theory. Their 
results indicate that the bifurcation is supercritical 
when buoyancy forces aid the fluid motion and are in 
agreement with the experiments of Maitra and Subba 
Raju. The time-dependent Navier-Stokes system was 
solved numerically by Yao and Ghosh Moulic [12] in 
the same flow situation using a Fourier~2hebyshev 
spectral method for different initial conditions. They 
found that the supercritical equilibrium state of the 
travelling waves bifurcating from fully-developed 
mixed convection flow is not unique, but depends on 
the waveform of the initial disturbance. In all cases, 
the equilibrium state consisted of a single dominant 
mode and its superharmonics. The range of  equi- 
librium wavenumbers of this dominant mode was 
found to be narrower than the band of  wavenumbers 
that can grow according to linear theory. Dis- 
turbances with wavenumbers outside this range but 
within the unstable region of linear theory were found 
to decay, their energy being transferred to a mode 
with wavenumber inside the narrow band. This result 
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is in agreement with the Eckhaus and Benjamin-Feir 
sideband instability [18]. It is worthy to point out that 
a secondary instability, like a sideband instability, is 
also a consequence of nonlinear energy transfer 
among different waves. The selection of the final equi- 
librium wavenumber is due to a nonlinear energy 
transfer process w!hich is sensitive to initial conditions, 
and is not unique. 

This nonuniqueness of the equilibrium state has 
been observed experimentally in Taylor-Couette [19, 
21]. Snyder [19] showed that while the wavelength at 
the onset ofinstab:ility was unique, Taylor vortex flows 
of different wavenumbers could be obtained at the 
same value of the Taylor number by varying the initial 
conditions in the experiments. He observed that there 
was a band of accessible wavenumbers narrower than 
the band that cart grow according to linear theory. 
Burkhalter and Koschmeider [20] studied the vari- 
ation of the wavelength of supercritical Taylor vor- 
tices. They found that Taylor vortices maintained the 
critical wavelength over a wide range of Taylor num- 
bers if the Taylor number was varied quasi-steadily 
and end effects were taken into account. In a later 
article, Burkhalter and Koschmeider [21] reported 
results in which Taylor vortices were established 
through a sudden start of the inner cylinder. They 
found that a sudden start to a preset Taylor number 
gives the fluid a choice in the selection of the wave- 
number. The nonlinear interactions among Taylor 
vortices with different wavenumbers was studied by 
Yao and Ghosh Moulic [13] using a weakly nonlinear 
theory formulated with a continuous spectrum. They 
represented the di,;turbance by a Fourier integral and 
derived an integro-differential equation for the evol- 
ution of the amplitude density of a continuous spec- 
trum of waves. Solutions of this integro-differential 
equation indicated that the equilibrium state 
depended on the wavenumber and amplitude of the 
initial disturbance, as observed experimentally. They 
outlined selecting principles of equilibrium wave- 
lengths from their numerical results. These principles 
can be used as a guide in selecting a possible range of 
equilibrium wavelengths in experiments. An impor- 
tant implication of  the existence of non-unique equi- 
librium states is that the torque required to maintain 
the rotation of the cylinder at a constant speed cannot 
be determined uniquely after the first bifurcation 
point. 

This principle of nonuniqueness has so far been 
observed experimentally only for closed systems such 
as Taylor and Bernard instabilities, and has been veri- 
fied theoretically tbr the Taylor instability [13]. The 
numerical solution of Navier-Stokes equations dem- 
onstrated that the principle of nonuniqueness is also 
true for an open system, such as mixed-convection 
pipe flows [12]. Therefore, the principle of non- 
uniqueness is a generic property of all fluid flows. 
Consequently, an3' physical quantity transported by 
the fluid motion such as heat and salt can at best be 

determined within a limit of uncertainty associated 
with non-uniqueness after the first bifurcation point. 

The analysis in Section 2 is developed to study the 
nonlinear evolution of a disturbance of arbitrary 
initial waveform. We consider a one-dimensional 
basic flow and study the stability of this flow to three- 
dimensional disturbances. The formulation can be 
extended to two-dimensional and three-dimensional 
basic states. The disturbance is represented by a con- 
tinuous Fourier integral over all possible wave- 
numbers. The Fourier components of the disturbance 
quantities are then expanded in a series of linear stab- 
ility eigenfunctions. The eigenfunction expansion 
reduces the Navier-Stokes equations to a system of 
coupled nonlinear integro-differential equations for 
the temporal evolution of the amplitude density func- 
tion of a continuous spectrum of waves. No approxi- 
mations are involved in this reduction. Thus, the 
integro-differential equations are equivalent to the 
Navier-Stokes equations. It is worth noting that 
although the integro-differential equations describe 
the temporal evolution of the amplitude density func- 
tion in Fourier space, the integral formulation does 
allow the disturbance to have a general spatial vari- 
ation in physical space and is not restricted to spatially 
periodic disturbances. 

The eigenfunction expansion used in the current 
formulation implicitly assumes that the linear stability 
operator has an infinite set of discrete eigenvalues and 
a corresponding infinite set of eigenfunctions which 
form a complete set. There is no general proof of the 
completeness of the linear stability eigenfunctions. It 
has been shown that the Orr-Sommerfeld equation 
has a complete set of eigenfunctions for plane Couette 
flows [22] and plane Poiseuille flow [23]. DiPrima and 
Habetler [24] have proved a completeness theorem for 
a general class of non-self-adjoint eigenvalue prob- 
lems in a finite bounded domain. Using this theorem, 
they have demonstrated that the Benard problem, the 
Taylor problem and the Orr-Sommerfeld equation 
for flow in a bounded domain have a complete set of 
eigenfunctions. These results, however, do not apply 
if the domain is infinite as in the case of the Blasius 
boundary-layer flow. Grosch and Salwen [25] showed 
that the Orr-Sommerfeld equation governing the 
stability of a shear flow in an unbounded domain 
which approaches a constant velocity in the far field 
has a continuous frequency spectrum. In this case, the 
disturbance quantities cannot be represented by a sum 
over only the discrete modes; the contribution from 
the continuous, or ' improper'  eigenfunctions must be 
included [26]. There may also be cases where the linear 
stability operator has an infinite set of discrete eigen- 
values, but all of the eigenvalues are not distinct. If 
the matrix corresponding to the discretized form of 
the linear stability operator is derogatory but non- 
defective, the eigenvectors are linearly independent 
[27]. If, however, the matrix is defective, some of the 
eigenvectors are linearly dependent. In the latter case, 
it is still possible to find a linearly independent set of 
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generalized eigenvectors [28]. In the present inves- 
tigation, our numerical results have been verified by an 
independent computation using a Fourier-Chebyshev 
spectral method. This provides an indirect verification 
of the completeness of the linear stability eigen- 
functions in this flow. 

In Section 2.4, a perturbation expansion with mul- 
tiple time scales is used to show that the equations 
describing the evolution of the amplitude of mono- 
chromatic waves and the envelope of slowly-varying 
wavepackets in classical weakly nonlinear theories are 
special limiting cases of this set of integro-differential 
equations in a parameter range close to the onset 
of linear instability. The reduction of the continuous 
formulation to the special limiting cases of mono- 
chromatic waves and wave-packets shows the limi- 
tations of the classical approaches. In particular, the 
Ginzburg-Landau equation describing the evolution 
of the envelope of a slowly-varying wavepacket is 
shown, at best, to be an approximation which is valid 
only locally in the neighbourhood of the onset of 
linear instability. This equation is known to have 
chaotic solutions [29-31]. The present investigation 
indicates that while this equation may have chaotic 
solutions, these solutions may not have physical rel- 
evance since the equation is not valid in a parameter 
range which is not near the linear neutral curve. Fur- 
thermore, solutions of the Ginzburg-Landau equa- 
tion can only describe a slow spatial modulation of a 
periodic fluid motion with a single dominant wave- 
number, and is incapable of describing chaotic fluid 
motion with a general spatial variation. Solutions of 
the integro-differential equations in the current for- 
mulation, on the other hand, are valid for all 
parameters, include full spectra and can describe 
chaotic fluid motions properly. The current for- 
mulation thus provides the proper framework for the 
study of spatio-temporal chaos. 

The integro-differential equations have been solved 
numerically with different initial conditions for super- 
critical Rayleigh numbers. In all cases, the final equi- 
librium state was found to be a monochromatic 
travelling wave with a dominant fundamental wave- 
number kf and its superharmonics, and an associated 
mean flow distortion with the values of the selected 
parameters. Nonlinear interactions were found to 
excite a number of eigenmodes for the fundamental 
wave (k = kf) and its harmonics, and the mean flow 
distortion (k = 0). The equilibrium wave-speeds of all 
the eigenmodes were found to be the same. Thus, 
the harmonics of the fundamental wave kf are phase- 
locked at equilibrium. The fundamental wavenumber 
kf in the final equilibrium state was found to depend 
on the initial conditions. Thus, the equilibrium state 
of the flow is not unique. Multiple stable equilibrium 
states are found to exist at the same value of the 
dynamic similarity parameters. The results imply that 
the selection of this wavenumber kf is a natural conse- 
quence of a nonlinear energy transfer process and 
depends on the initial conditions. The current for- 

mulation with a continuous spectrum allows us to 
study the nonlinear evolution of the disturbance from 
an arbitrary initial waveform as well as the proper 
selection of the equilibrium wavenumber. 

The solution of the integro-differential equations 
indicates that the equilibrium amplitudes of some of 
the eigenmodes for the mean distortion are larger than 
the amplitude of the most unstable eigenmode of the 
fundamental wave even at Rayleigh numbers less than 
1% above the critical value. This implies that classical 
weakly nonlinear theories which assume a priori that 
the energy associated with the mean flow distortion 
induced by the fundamental wave is an order of mag- 
nitude smaller than the energy of the fundamental 
wave, are not valid, even in a parameter range very 
close to the onset of linear instability where the weakly 
nonlinear analysis may be expected to be valid. The 
reason for the failure of the classical theories is that 
these theories consider only the most unstable eigen- 
mode. Our computation indicates that the con- 
tribution from the other eigenmodes has a large effect 
on the mean flow distortion even near the onset of 
instability. Thus, it is inadequate to consider only the 
most unstable eigenmode, although this assumption 
leads to a considerable simplification in the analysis. 

The solutions also show that there are two types of 
nonlinear interaction between waves. One is direct 
interaction, if they satisfy the resonance condition, 
which has been pointed out by Landau and is analysed 
in detail in Section 2.4. The other is indirect interaction 
in which the waves interact simultaneously with the 
mean flow (k = 0). The resonance condition for 
indirect interaction is always satisfied and the indirect 
interaction constantly exists, but has been overlooked 
in classical theories. 

The results of the numerical integration of the 
integro-differential equations are compared with the 
results of a direct numerical simulation of the time- 
dependent Navier-Stokes equations using a Fourier- 
Chebyshev spectral method [ 12]. Complete agreement 
is found between the two numerical solutions, as 
expected, since they are both exact solutions of the 
Navier-Stokes equations. The eigenfunction expan- 
sion used in the current formulation requires only 
one amplitude density function for the all dependent 
variables, such as the velocity components and tem- 
perature. Thus, the three momentum equations and 
the energy equation is replaced by a single equation 
fur the amplitude density function. Consequently, the 
number of operations involved in the numerical solu- 
tion of the integro-differential equations is much less 
than that involved in a Fourier-Chebyshev spectral 
method. The required CPU time for the solution of 
the integro-differential equations of the current two- 
dimensional problem is only 25% of that required 
for the direct numerical simulation. Our formulation 
presents an efficient numerical method for solving the 
time-dependent Navier-Stokes equations with sig- 
nificant savings in computer time. The two com- 
putations were done on a CRAY C-90 supercomputer, 
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and both computer codes were fully optimized to take 
advantage of the w',ctor facilities on the CRAY. Thus, 
the relative CPU time for the two computations is a 
true indication of the computational efficiency of the 
current formulation. 

2. ANALYSIS 

In this section, w e  develop a general formulation to 
study nonlinear interactions among travelling waves 
in cylindrical coordinates. We consider a steady one- 
dimensional basic flow and study the stability of this 
flow to three-dimensional disturbances of arbitrary 
waveform. The formulation can be generalized to 
three-dimensional basic-states. The disturbance is rep- 
resented by a Fourier integral, and a system of equa- 
tions describing the nonlinear wave interactions 
among the Fourier components is derived in Section 
2.1. The linear stability of the basic flow is analysed in 
Section 2.2. The solution of the nonlinear disturbance 
equations is considered in Section 2.3 by expanding 
the Fourier components in a series, using the 
eigenfunctions of finear stability theory as the basis 
functions. The eigenfunction expansion reduces the 
Navier-Stokes system to a set of integro-differential 
equations for the amplitude density function of a con- 
tinuous spectrum. No approximations are involved in 
this reduction. Thus, the integro-differential equations 
are equivalent to tile Navier-Stokes equations. A per- 
turbation expansion based on the method of multiple 
scales is used in Section 2.4 to show that the equations 
describing the evolution of the amplitude of mono- 
chromatic waves and the envelope of slowly-varying 
wavepackets in cla.ssical weakly nonlinear theories are 
special limiting cases of this set of integro-differential 
equations. In order to demonstrate this, we follow 
the classical approach and solve the Navier-Stokes 
equations directly in Section 2.4.2 using a per- 
turbation method before doing the eigenfunction 
expansion. The resulting solution is compared with 
the perturbation solution of the integro-differential 
equations resulting from the eigenfunction expansion 
presented in Section 2.4.1, in order to show the equiv- 
alence between the two approaches. In Section 2.4.3, 
we consider the important special cases of mono- 
chromatic waves and slowly-varying wavepackets. 

Mixed convection flow in a heated annulus is used 
as a model problem to develop the formulation. We 
consider the flow in a vertical annulus, driven by an 
external pressure gradient, as illustrated in Fig. 1. A 
constant vertical temperature gradient is maintained 
at the inner cylinder, and the outer cylinder is insu- 
lated. The temperature of the inner wall increases 
linearly with the axial coordinate from an upstream 
reference temperature, To, as Tw = To+pz,  where p is 
the constant vertical temperature gradient and ~ is the 
(dimensional) axial coordinate. In the limiting case of 
fully developed flow, this simulates a uniform heat 
flux thermal boundary condition on the inner cylinder. 
The equations describing the flow are the continuity, 

! Z r2--q 
r 

! .......... - 

Fig. 1. Geometry and coordinates. 

momentum and energy equations. Using the Bous- 
sinesq approximation, these equations may be written 
in dimensionless form as 

V ' u = O  

Ou C 1 2 Ra 
o t + u ' V u = ~ e e e , - V p + ~ e V  u-~eOe~ (11 

00 R--~PrPr w 0~ + u ' V 0  = V20+ RePr 

where e~ is the unit vector along the z direction, 
u = (u, v, w) are the velocity components in the r, q~ 
and z directions respectively, p is the pressure, 0 is the 
temperature and t is the time. All lengths have been 
scaled by the distance between the cylinders, 
d = r 2 -  r~, where rl is the radius of the inner cylinder 
and r2 is the radius of the outer cylinder. Our choice 
of the velocity scale is based on the applied axial 
pressure gradient, G. The average axial velocity 
for isothermal flow through an annulus is given by 
W, ve = Gd2/(pvC), where C = 8 ( I -q) / [ (1  +q2)/ 
( ( 1 -  q)+ (1 + q)/ln q)], q = r~/r 2 is the radius ratio of 
the annulus, p is the density of the fluid and v is the 
kinematic viscosity. This provides a natural velocity 
scale for this problem. A non-dimensional pressure is 
defined by p = (p + Gdz)/p W 2 v e ,  where p is the (dimen- 
sional) pressure fluctuation. The time is scaled by 
d/Wavo. The dimensionless temperature is defined by 
0 = (Tw--T)/#dRePr.  The parameters in the problem 
are the Reynolds number Re = W,  vcd/v, the Prandtl 
number Pr = v/x, and the Rayleigh number Ra = 
#flgd4/(w).  Here, fl is the coefficient of thermal expan- 
sion of the fluid, x is the thermal diffusivity and 9 is 
the gravitational acceleration. The boundary con- 
ditions are 

u = v = w = 0 = 0  w h e n r = r i  (2) 

00 
and u = v = W = ~ r r = 0  w h e n r = r 0  

where ri = rdd, and r0 = r2/d. 

2.1. The disturbance equations in Fourier space 
The equations (1) admit a steady parallel-flow solu- 

tion u = v = 0, w = Wo(r), 0 = Oo(r). The stability of 
this parallel flow is studied by superposing a dis- 
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turbance on the basic flow, and writing the disturbed 
velocity and thermal fields as 

(u,v,w,O) =(u',v' ,  Wo(r)+w',Oo(r)+O" ) (3) 

where the primes denote disturbance quantities. It is 
worthwhile to point out that the magnitude of the 
disturbances do not have to be small. Substitution of 
(3) into (1) leads to a system of equations for the 
disturbance quantities. Following Yao and Ghosh 
Moulic [13], the disturbance quantities are expressed 
in their most general form as Fourier integrals over 
all possible axial wavenumbers. The Fourier trans- 
forms of the disturbance variables are then expressed 
as a Fourier series over the integer azimuthal wave- 
numbers. Thus, the axial component of the dis- 
turbance velocity is written as 

w'(r, c~, z, t) = ~(k, n, r, t) e ikz+in4~ dk. (4) 
n =  - o ~  - c o  

Similar expressions may be written for the other dis- 
turbance quantities. The disturbance equations in 
Fourier space may be expressed as 

li(k, n, r, t) 
Dzi(k, n, r, t) + 

r 

in~(k, n, r, t) 
+ + ik~(k, n, r, t) = 0 

r 

(k, n, r, t) + Lfik, n, O(k, n, r, t),p(k, n, r, t)) 

= Nj(k ,n ,r , t )  (5) 

where 

l~l(k, n, r, t) 

=(fl(k ,n,r , t ) ,O(k,n,r , t ) )  

-- ( Ft(k, n, r, t), f(k, n, r, t),~(k, n, r, t), 0(k, n, r, t)) 

the linear operators Lj are given by 

Ll (k,n, fd(k,n,r, t),l~(k,n,r, t)) 

_ l e [ L a ( k , n , r , t  ) ft(k,n,r,t)r 2 2ing(k,n,r,t)lr 2 _J 

+ ik Wo (r)a(k, n, r, t) + DP(k, n, r, t) 

L2 (k, n, fd(k, n, r, t), l~(k, n, r, t)) 

1 [L6(k, n, r, t) ~(k, n, r, t) 2ina(k,n, r, t)_] 
- -  R e  ~ r ~ -]- r 2 J 

infi(k, n, r, t) 
+ ikWo (r)O(k, n, r, t) + 

r 

L3 (k, n, U(k ,  n, r, t), P(k, n, r, t)) 

R a .  
-- 1 e L ~ ( k ,  n, r, t) + R e  O(k, n, r, t) 

+ikWo(r)~'(k,n,r , t)  

+ D[Wo (r)a(k, n, r, O] + ikP(k, n, r, 0 

L4(k, n, U(k, n, r, t),/5(k, n, r, t)) 

= Relpr Ltg(k, n, r, t) 
~(k, n ,  t ,  t) 

RePr 

+ikWo(r)O(k,n,r,t)+D[Oo(r)ft(k,n,r,t)] (6) 

L -  D2 + ( 1 / r ) D -  (n2/&) - k  2, D -  (d/dr) is the 
operator denoting differentiation with respect to the 
radial coordinate, and Nj(k, n, r, t) represents the non- 
linear convection terms in Fourier space defined by 

~j(k,  n, r, t) 

" (~n)2 f'_~ f]~(u'*Vufi)e-i(k~+n~° ddpdz, 

j =  1,2,3 
= (7) 

- ( 2 ~  f'_~ fi"(u"VO')e-'(kz+"C° d~dz ,  

j = 4 .  

We have used the index notation U1 = fi, Uz = 6, 
03 = ff and 04 = 0 in order to write the disturbance 
equations (5) in compact form. Equations (7) and (8) 
may be expressed in convolution form as 

~ ( k ,  n, r, t) = - ,, =~_o~ ,f~_oo M fik' n' fd(k' ' nl ' r' t)' 

U ( k - k ~ , n - n l , r , t ) ) d k l  (8) 

where Nj denote nonlinear operators given by 

Ml (k, n, f-J(kl,nl, r, t), fJ(k2, n2, r, t) ) 

= D[a(kl, hi, r, Oa(k2, n~, r, t)] 

a(kl,  n~, r, Oa(k2, n2, r, 0 + 
r 

~(kl, nl, r, t)z3(k2, n2, r, t) 
r 

2inla(kl ,n~, r, t)~(k2,n2, r, t) + 
r 

+ 2ikl a(k~, n~, r, t),~(k2, n2, r, t) 

M2 (k, n, U(kl,  nl, r, t), U(k2, n2, r, t)) 

= O[a(kl, n~, r, 0f(ks,  n2, r,/)] 

2a(kl, n,, r, t)f(k2, n2, r, t) 
+ 

r 

2inlf(kj ,  nl, r, t)f(k2, n2, r, t) + 
r 

+ 2ikl ff'(kl, n l, r, t)f(k2, n2, r, t) 

M3 (k, n, fd(kl , nl , r, t), U(k2, n2, r, t) ) 

= O[a(k~,  n~, r, Off(k2, n2, r, t)] 

+ a(k l ,n , , r , t )~(k2 ,n2,r , t )  
r 
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2in1 f(kl  , nl , r, t) ff~(k2, n2, r, t) + 
r 

+ 2ik~ if(k,, n l, r, Off(k2, nz, r, t) 

M4 (k, n, U(k  l , nl , r, t), U(k2, nz, r, t) ) 

= D[a(k l ,  n l ,  r, t)O(k2, n2, r, 0]  

ft(k l , n, , r, t)O(k2, n2, r, t) 
+ 

r 

2inl f(k~ , n~ , r, t)O(k2, n2, r, t) 
+ 

r 

+2ikl~(kl ,n l , r , t )O(k2,n2,r , t ) .  (9) 

The convolution integrals in equation (5) represent 
the nonlinear terms exactly. Equations (5) have to be 
solved subject to the boundary conditions 

a(k,n,r,  t) = f (k ,n .r ,  t) = ~(k,n,r ,  t) = O(k,n,r, t) 

= 0  a t r = r ~  (10) 

and 

a(k,  n, r, t) = ~(k, n, r, 0 = ~ (k ,  n, r, t) = DO(k, n, r, t) 

= 0 a t  r = ro. 

It is worth noting 1:hat while the spectrum of the dis- 
turbance quantities expressed by equation (4) is con- 
tinuous in the axial wavenumber k, it is discrete in the 
azimuthal wavenmnber n, due to the requirement of 
periodicity in the azimuthal direction. 

2.2. Linear stability 
The linear stability of the basic flow is studied by 

assuming the disturbance to be infinitesimally small, 
neglecting the convolution integrals which represent 
products of infinitesimal quantities, and expressing 
the Fourier components of the disturbance quantities 
in separable form as 

U(k, n, r, t) = U(k, n, r)e -'°(k'")' (11) 

where (o(k, n) = tc,R(k, n) + icoI(k, n) is the complex 
frequency for the wavenumbers (k, n) and the super- 
scripts "R" and "I"  denote the real and imaginary 
parts of the complex frequency. The linearized dis- 
turbance equations may be written in terms of the 
operators Lj as 

a(k, n, r) in~(k, n, r) 
Da(k, n, r) + - -  + - -  + ik~(k, n, r) = 0 

r r 

Lj(k, n, U(k, n, r),fi(k, n, r)) = i~o(k, n) ~ ( k ,  n, r) 

(12) 

where O(k,n,r)  )is the vector of eigenfunctions 
(a(k, n, r), ~(k, n, r), ~(k, n, r), O(k, n, r)). The 
associated boundary conditions are the same as those 
given by equations (10). Equations (12) with the 
appropriate boundary conditions form an eigenvalue 
problem for the complex frequency o~(k, n), with the 
disturbance being linearly unstable for ogI(k, n) > 0. 

2.3. Nonlinear formulation 
In this section, the disturbance equations (5) are 

solved by an eigenfunction expansion. The solution 
of equations (5) is expressed as 

U ( k , n , r , t ) =  ~ Am(k,n, t)Um(k,n,r)  (13) 
m = l  

where Urn(k, n, r) is the eigenfunction of the linearized 
equations (12) corresponding to the mth eigenvalue 
ogm(k,n) and Am(k, n, t) is a time-dependent ampli- 
tude density function. The eigenvalues, Ogre, of the 
linear-instability operator are ordered so that 
09] /> o3~/> o~ I ~> . . . .  Thus, the first eigenvalue rep- 
resents the least stable or the most unstable mode. 
The eigenfunctions are normalized so that 

~ o [laml 2 + I~ml 2 + Iffm[2] r d r  = 1. 

The amplitude density function is determined by sub- 
stituting the eigenfunction expansion (13) into the 
disturbance equations (5) and using the orthogonality 
relation between the eigenfunctions U(k, n, r) of the 
linearized equations (12) and the corresponding 
adjoint eigenfunctions Ut(k, n, r) = (u*, v*, w t, 0t). We 
define an inner product between the vectors l~l and 
U* by (U*, ~1) = (u t, a)  + (v*, zT) + (w*, ~)  + (0*, 0), 
where the inner product between two scalar functions 
f ( r )  and g(r) is defined as 

( f , g ) = f , i ° f * 9  dr 

and the asterisk denotes complex conjugates. If  the 
adjoint eigenfunctions are normalized so that 

(U~(k ,n ,r ) , lS j (k ,n ,r )}  = 5j.,~ (14) 

where 6j.m is the Kronecker delta, taking the inner 
product of the r-momentum equation with u~, the q~- 
momentum equation with Vtm, the z-momentum equa- 
tion with w~(k,n, r) and the energy equation with 
O*~(k,n, r) and adding yields, on using the orthog- 
onality property (14) of the eigenfunctions and the 
continuity equation, the following system of coupled 
nonlinear integro-differential equations for the ampli- 
tude density functions : 

dam 
d ~  + i°gmAm = (U~, 1¢~) (15) 

where lq = (-~l, A~2, A~3, N4). This is equivalent to the 
Fredholm alternative theory. Using equation (8), 
equation (15) may be expressed as 

dAm 
- ~ -  + immAm 

= ~ ~ ~ I ( k , n , m , m , , m 2 , n , , t ) ( 1 6 )  
m l = l  m 2 = l  n l=--¢o 

where 
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I =  f~-o~ b (k l , k - - k l ,n l ,n - -n l ,ml ,mz ,m)  

• Am, ( k l ,  h i ,  t) Am2(k-kl ,  n - n t ,  t) dk~ 

and the interaction coefficients 

b = (U*m(k,n,r),M(k,n, •m,(kl,nl,r), 

1.7, ,2(k-k, ,n-n, ,r))  ) 

depend on the eigenfunctions of the linearized equa- 
tions (12) and the corresponding adjoint eigen- 
functions, and are independent of time. 

It is instructive to write the complex amplitude den- 
sity function in polar form as Am(k, n, t) = R~(k, n, t) 

- R 2 12 e '~m(k"''), where Rm = [Aml = X/~m +A,,)  is the mag- 
nitude and tim = tan ~ (A~/ARm) is the phase angle. The 
complex amplitude equation (16) may be expressed in 
polar form as 

dRm 
= eO~Rm+l~ (17) 

dt 

d/~,. 
- ~o~ + I~., (18)  

dt 

where 

I~ J {bl cos ~--bR sin if} 
m l = l  m 2 = l  n l = - - c c  , o~ 

• Rm, (kl, r/l, t)Rm2(k-k~, n -n~ ,  t) dk~ 

Z = ~ ~ ~ fo~ { b R c ° s 0 + b ' s i n 0 }  
m l = l  m 2 = l  n l = - - c c  z~ 

Rmj (kl, hi, t)Rm2 ( k - k l ,  n - n l ,  t) 
dk~ 

Rm (k, n, t) 

~(k,n,m, k l ,n l ,ml ,m2,  t) = flm~(kl,nl, t) 

+flm2(k-k~, n - n , ,  t) --tim(k, n, t), 

and b e and b 1 are the real and imaginary parts of b, 
respectively. The first term on the right-hand side of 
equation (17) is the amplification or decay rate pre- 
dicted by linear stability theory and represents energy 
transfer due to linear convection and viscous effects. 
The convolution integrals represent energy transfer 
among the wave components due to nonlinear wave 
interactions. The first term on the right-hand side 
of equation (18) is the frequency predicted by linear 
theory. The second term in equation (18) represents a 
modification in the frequency due to nonlinear effects. 
It is worth noting that the fixed points of equation 
(17), obtained by setting dRm/dt = 0, represent an 
equilibrium time-periodic travelling wave solution 
with amplitudes which are steady. Equation (17) indi- 
cates that this equilibrium solution is possible only if 
the relative phase angle ~, is independent of time, that 
is, if d~k/dt = 0. Since the frequencies of the eigen- 
modes for a given wavenumber predicted by linear 
theory are not necessarily equal, phase-locking can 

occur only if nonlinear effects synchronize the waves 
so that all the eigenmodes travel with the same phase 
speed. 

The eigenfunction expansion (13) has reduced the 
three momentum equations and the energy equation 
to the system of integro-differential equations for the 
amplitude density functions (16) without any approxi- 
mations. Thus, the solution of equations (16) rep- 
resents a solution of the Navier-Stokes equations. 
The linear terms on the left-hand side of (5), which 
represent the convection of the disturbance waves by 
the mean flow, the distortion by the mean-flow stresses 
and by the buoyant-body forces, and the diffusions of 
momentum and energy, are reduced to a single term 
in (16), which describes the growth or decay of the 
wave in the generalized coordinates of the eigen- 
functions. This is a drastic simplification of the gov- 
erning equations due to the fact that the eigen- 
functions of the linear stability analysis form the fun- 
damental solutions of the problem. These fundamental 
solutions may share many similarities for certain 
classes of problems, but differ in detail. It is unlikely 
that a universal solution exists for all fluid flows. The 
growth rate of the disturbances and the mean flow 
can be substantially altered by the nonlinear energy 
transfer among them. The nonlinear energy transfers 
are represented by the convolution integrals on the 
right-hand side of (16). In Section 2.4, we will show 
that the convolution integrals represent resonant 
triads, quartets, and so forth. The significance of the 
nonlinear wave interactions decreases as the number 
of involved waves increases. 

Equations (16) may be solved numerically. It is 
worth pointing out that one of the major diffÉculties in 
the numerical solution of the incompressible Navier-  
Stokes system is the simultaneous enforcement of the 
no-slip boundary conditions and the incompressibility 
constraint [32]. Since the vector of basis functions 
used in the expansion (13) are solutions of the 
linearized Navier-Stokes equations, they individually 
satisfy the incompressibility constraint as well as the 
boundary conditions. Therefore, the expansion (13) 
automatically satisfies the boundary conditions and 
the continuity equation. Thus, the numerical solution 
of the system of equations (16) is much simpler than 
the numerical solution of the Navier-Stokes equa- 
tions. It may also be noted that straightforward evalu- 
ation of the convolution product representing the non- 
linear terms in equation (16) is inefficient if the number 
of terms in the truncated eigenfunction expansion 
used in the numerical solution is large. However, 
pseudospectral evaluation of the convolution product 
can make the numerical solution of the equations (15) 
a viable efficient alternative to the numerical solution 
of the Navier-Stokes equations. 

2.4. Limiting cases 
In the following, we will demonstrate that weakly 

nonlinear flow instability or wave interaction is a lim- 
iting case of the nonlinear formulation presented 
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above in a parameter range close to the onset of linear 
instability. 

2.4.1. Expansion and perturbation. The weakly non- 
linear development of the disturbances may be studied 
by expanding the Fourier amplitudes in a perturbation 
series. The maximum amplification rate predicted by 
linear instability theory is used as the expansion par- 
ameter e [13]. The amplification rate predicted by lin- 
ear theory for the mth eigenmode of the wave with 
axial wavenumber k and azimuthal wavenumber n 
may be expressed in terms of e as ~oI(k,n)-  
gam(k, n). This makes am(k, n) a constant of order one. 
It may be noted that the ordering used in the per- 
turbation expansion in Section 2.4 differs from the 
ordering in the weakly nonlinear theory of mono- 
chromatic waves [1]. The wave components of a con- 
tinuous spectrum may exchange energy due to quad- 
ratic nonlinear interactions among resonant triads of 
wavenumbers. Nonlinear interactions among res- 
onant triads may play an important role in the lami- 
nar-turbulent tran,dtion process in some shear flows 
[33, 34]. Such nonlinear interactions among resonant 
triads are absent in monochromatic waves and slowly 
varying wavepackets. The present ordering allows the 
possibility of nonlinear interactions among resonant 
triads, and consequently differs from the usual order- 
ing of classical weakly nonlinear theories of mono- 
chromatic waves. In the special limiting cases of 
monochromatic waves and slowly-varying wave- 
packets, the final form of the amplitude equations 
obtained from the current formulation is the same as 
those in classical weakly nonlinear theories. 

It is convenient to write the coefficients in the 
eigenfunction expansion (13) as 

A,.(k,n,t) =-.4m(k,n,t)e -i~(k'n)' (19) 

where ~R is the (real) frequency predicted by linear 
theory, so that equation (16) takes the form 

dam = ea,.-~m 
dt 

+ ~ ~" ~ i(k,n,m,m,,m2,nl,t)(20) 
m l = l  m2=l  n]~ o~ 

where 

i = i ~ bA,,~(kj,n~, t)A,,2(k-kl,  n-n~,  t) e in3-' dkl 
cc 

and 

f~3w = c0~(k, n ) -  mRm, (kl, nl)--ogR~(k--kl, n--n1). 

The amplitude density function Am is further 
expanded in a perturbation series as 

Am(k , n, t) = ~Am, 1 (k, n, t, Tl, T2) 

+e2A,..2(k,n, t, Tt, T2)+~3Am,3(k,n, t, T~, 7"2)+... 

(21) 

where T~ = et and T2 = g2t are slow time scales. Sub- 
stitution of the expansion (21) into equation (20) 

results in a set of equations at different orders on 
equating coefficients of like powers of e. The leading 
order equation is 

OAm'l (k,n, t, T1, T2) = 0. (22) 
at 

Equation (22) indicates that the leading order ampli- 
tude density function is independent of the fast time 
scale t. The equation at second order is 

~ Am,2 
d~- (k, n, t, T,, T2) 

[-dAm i ] 
= -- L ~ ( k , n ,  T1, T2)-am(k,n)Am,,(k,n, T,,Tz) 

+ ~ ~ i t ( k , n ,m ,m , ,m2 ,n , , t , r , , T2 )  (23) 
ml,rn 2 n I 

where 

i, = f~_~ bA., . ,(k, ,n~,T,,T2) 

"Amy 1 (k -k~ ,  n - n l  , Tl, 1"2) e in~t dkl. 

The summations over rn~ and m2 range from 1 to ~ ,  
while the summation over n~ ranges from - oo to c~. 
The integrals on the right-hand side of equation (23) 
depends on the fast time scale t, as well as the slow 
time scales Tl and T2. The integrands oscillate on the 
fast time scale with a frequency f~3w. It is worthwhile 
to note that the dispersion relation allows a three- 
wave resonance if O3w = 0. When this condition is 
satisfied, the integrands do not depend on the fast 
time scale. Thus, the forcing function on the right- 
hand side of equation (23) may be split into two parts : 
(a) a "steady part", which is independent of the fast 
time scale t, and (b) an oscillatory part which depends 
on the fast time scale. The steady part of the forcing 
function will invoke a resonant response which grows 
linearly in t. Elimination of the secular terms yields 
the following equation for the evolution of the leading 
order amplitude density function on the T~ time scale : 

t~ A m  A 
(~T1 - am'4mA + E ~iS(k,n,m,m~,m2,n~, T,, T2) 

ml,m 2 nl 

(24) 

where i s is the "steady part" of the integral i~. The 
steady part of the integral is determined by con- 
tribution from the neighborhood of points satisfying 
the three-wave resonance condition ~3w = 0. If there 
are N disjoint regions k L ~< kl ~< k~, j = 1,2 . . . . .  N 
over which the three-wave resonance condition is sat- 
isfied, the steady part of the integral is given by a 
summation of integrals over these N regions : 

i s - bA,.,,, (kl,n,,  T,, T2) 
j = l  

• Amvl (k-kl, n-n1, T1, T2) dkl 
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or compactly 

i s  = f ~ o  b~Am"' (k, ,n , ,  T, ,  T2) 

" Am~.l ( k - k ,  , n - n , ,  Tt ,  7"2) dkl,  

where the coefficient 

bS = fb, kL ~ k, <<. k~, j = l  . . . .  N 

0, otherwise. 

Triads of wavenumbers (kl ,nl) ,  ( k - k l , n - n , )  and 
(k, n), which satisfy this condition, called resonant 
triads, exchange a significant amount of energy on the 
TI time scale. Substitution of equation (24) into the 
right-hand side of equation (23) leads to 

63 Am,z 
O----~ = Z Y ' i ~ ( k , n , m , m , , m 2 , n , , t , T , , T z )  

m I , m  2 n I 

(25) 

where 

7- T = f ~  bTAm,A(k,,n,, T,, T2) 

• A,,:,, ( k - k 1 ,  n - n l ,  Tl,  T2) e in~''t dkj 

is the time-dependent part of the forcing function and 
b T = b - b  s. Integration of equation (25) with respect 
to the fast time scale yields the second order amplitude 
density function 

~, ~, I ~ bTAm, , , (k~ ,n , ,T , ,Tz)  Am, z = 
m I , m  2 n t  ~ - -  o~ 

"Am~,, ( k - k , ,  n - n , ,  T, ,  T2) t z~3  dk , . (26) 

The amplitude density function at third order is 
described by the equation 

OAm 3 OAm,1 VOAm.z ] 
a~-  - 8Tz L OT, -a, , , fk,  n)A,,,,z 

+ F~ b[A.,,.,(k,.n,.r,.rz) 
m I , m  2 n I 

• A,.~,z ( k -  k , ,  n - - n l ,  t, T,,  T2) 

+ A,,~.2 (kl ,nl ,  t, T,, T2) 

• Am~,, ( k - k ~ ,  n - n l ,  T~, T2)] e ~n,'' dkl .  (27) 

The right-hand side of equation (27) involves the first 
and second order amplitude density functions. Using 
equation (26) to express the second order amplitude 
density function in terms of the first order amplitude 
density function, equation (27) may be expressed as 

OAm,3 
~t 

D A m , ,  

~T2 

+ ~, Z i z ( k , n , m , m , , m 2 , n , , t , T , , T 2 )  
m l , m  2 n I 

+E E E  
m l , m  2 r n 3 , m  4 n l , n  2 

" ]3(k ,n ,m,  m l , m z , m 3 , m 4 ,  nl ,nz, t, T1, Tz) 

(28) 

where 

]z = bA,,,,, (kl, n,, T,, T2) 
co  

• A,~2,, ( k - k l ,  n - n , ,  T,,  7"2) e in3-' dkl 

]3 = eAm,,i (kt, nl, T1, Tz) 
oo 

• A,~3,,(kz,n2, Tl,  1"1) 

• A,..,, ( k - k l  - k z ,  n - n l  - n z ,  T, ,  7:2) 

• e if~4''t dk, dk: 

= b T [ a m ~ ( k " n ' ) + a " 2 ( k - k " n - n ' ) - a m ( k ' n ) ]  

i~3w 

? =  [ b T ( k l , k - - k l , n l , n - - n l , m l , m 2 , m )  

+ b Y ( k - k l ,  k l ,  n --nl ,  nl, m2, ml ,  m)] 

• b S ( k 2 , k - k l - k 2 , n 2 , n - n  I - n 2 , m 3 , m 4 , m z )  

i~'~3w 

+ [b(kl, k - k l ,  nl, n - n l ,  rnl, m2, m) 

+ b ( k - k l ,  k l ,  n - -h i ,  nl, me, ml ,  m)] 

bT ( k E , k - k l  - k 2 , n 2 , n - n l  -nE,m3,rn4,rn2) 

if~3w 

and 

~4~ = f~3w(k,n,m, k l , n l , m l , m z )  

+f~3 , , (k -  kl ,  n - -n t ,  m2, k2, n2, m3, m4) 

= ogR(k, n) --O~Rm, (kl,  n, ) 

--ogR3 (k2,n2)--toR, ( k - -k l  - - k2 ,n - -n l  --n2). 

The forcing function on the right-hand side of equa- 
tion (28) contains two integrals. The first integral has 
a form similar to the integral in equation (23). The 
second integral involves an integrand which oscillates 
on the fast time scale with a frequency ~4w. If  the 
dispersion relation allows a four-wave resonance, 
there are points in the wavenumber space where 
f~4w = 0. When this condition is satisfied, the inte- 
grand does not depend on the fast time scale. Thus, as 
in the case of the second order equations, the forcing 
functions on the right-hand side of equation (28) may 
be split into a "steady" part and an oscillatory part. 
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Application of the solvability condition results in the 
following equation describing the evolution of the 
leading order amplitude density function on the 7'2 
time scale : 

~ A m ,  1 
OT2 - ~ ~ i s ( k ' n ' m ' m l ' m 2 ' n l ' T " T 2 )  

ml,m 2 n I 

+ ~. ~ " iS(k ,n ,m,m, ,m2,m3,m, ,n l ,nz ,  Ti,T2) 
ml,m 2 nt,n 2 
ra3,m 4 

(29) 

where i s and i s are the steady parts of the integrals 
/2 and ]3, respectively, i s is determined by con- 
tributions from the neighborhood of points satisfying 
the three-wave resonance condition, as explained 
earlier, i s is determined by contributions from the 
neighborhood of points satisfying the four-wave 
resonance condition f~4~ = 0, and is determined in a 
similar manner. Quartets of wavenumbers (k~,nO, 
(k2,n2), ( k - k l - k 2 , n - n l - n 2 )  and (k,n) which 
satisfy this condition, called resonant quartets, 
exchange a significant amount of energy on the 7"2 
time scale. 

Equations (24) and (29) may be combined to yield 
a single equation for the evolution of the leading order 
amplitude density function : 

~Am, l aT~ = a.Am,, + IE Z i s (k ,n ,m,m, ,m~,n , ,  ~) 
ml,m 2 nL 

+ ~, ~ "]'S(k,n,m, ml,m2,ma,m,,nl ,n2,  T) 
ml,m 2 nl,n 2 
m3,m 4 

(30) 

where T = et and ] s and i s are the steady parts of the 
integrals 

= f~ [b+eb]A,~,.l(k~,n~, T) 
d- oo 

• Am~, l ( k  - k l ,  n - n l ,  T )  e i%,,t dkl 

and 

i 5  = I I ~ o o  g ~ A m l , l ( k l , n l ,  T ) A m s ,  l ( k 2 , n 2 ,  T )  

"Am,,1 ( k - k 1  --k2, n - n l  - n2 ,  T) e ;n,,~'/dkl dk2 

respectively. Equation (30) is the generalization of the 
weakly nonlinear interaction of stationary waves of a 
continuous spectrum [13] to travelling waves. 

It is worthwhile to note that the eigenfunction 
expansion (13) implies the following expansion for the 
disturbance quantities 

(~j(k, n, r, t) 

= eUu(k,n,r,t,  T~, T2)+e2U2j+e3U3j+... (31) 

The first order perturbation quantities are given by 

0 u = ~. Am.1Umje ,ot (32) 
m = l  

where Umj is the j th  component of the vector Urn. The 
second order perturbation quantities are given by 

zI _ ~'~2j m = l  ~" b r A " " ' ( k " n " T " T 2 )  
ml,m 2 n I oo 

• Am~,l ( k - k l ,  n - n 1 ,  Tl, T2) 

e-i[,o~ (k~.n0+,~(k-k~.n-n0]t ~ 
i~3w Umy dkl. (33) 

Equation (33) indicates that even if we consider 
only the least stable eigenmode (m = 1) at leading 
order, nonlinear interactions excite an infinite number 
of eigenmodes at second order since the interaction 
coefficients are non-zero for the higher modes (m ~> 2), 
although the infinite sum over the eigenmodes m l and 
m2 in equation (33) now reduces to only one term. 
Classical weakly nonlinear theories take this into 
account by solving the perturbation equations for the 
second harmonic and the mean-flow distortion at 
second order directly without using an eigenfunction 
expansion. In order to make a comparison with classi- 
cal weakly nonlinear theories, we solve the Navier-  
Stokes equations by a perturbation method first in the 
following section. 

2.4.2. Perturbation and expansion. In the section, we 
follow the lead of Stuart [1], and solve the Navier-  
Stokes equations (5) by a perturbation method before 
using the eigenfunction expansion. The dependent 
variables are expanded in a perturbation series as 
follows 

U(k,n,r, t) = eU l (k,n, r, t, T, , T2)+e2U2-{-/~3~13 - [ - . . .  

(34) 

The first order perturbation quantities are solutions 
of the linearized disturbance equations (12). They may 
be expressed in the form 

Ul(k,n,r, t ,  T1, T2) 

M 
= ~, Bin(k, n, Tl, T2)lTJm(k, n, r) e -i'°~t (35) 

m = l  

where Bin(k, n, T~, 7"2) is a slowly-varying amplitude 
density function of order one. We have kept M 
eigenmodes in equation (35). In the limit as M 
approaches infinity, the results of this section become 
the same as the results of Section 2.4.1. The weakly 
nonlinear theory of monochromatic waves [1] con- 
siders only the least stable eigenmode at this order. 
We can recover the result of classical weakly nonlinear 
theory by setting M to one. A comparison of equations 
(32) and (35) reveals that the relation between the two 
expansions is given by B m = A m .  1 . 
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The second order perturbation quantities are 
described by the equations 

fi2 (k, n, r) 
Dfi2 (k, n, r) + - -  

r 

im~ (k, n, r) 
+ 

~3t + L~(k'n' fS~'t~2) 

+ ik~z (k, n, r) = 0 

LaT,F ~B" ]U~,e N2, (36) f a~.(k n)Bm ~ " ° " '  " I m = I I ~ , ,,, I 

where 

/Vzi = -- Z E Bmi(k,,/71) 
m t = I m 2 = 1 n I = -oc oo 

" a m ~ ( k - k , , n - n , ) M i ( k , n ,  Um,, Um ~) 

Application of the Fredholm alternative theory leads 
to the following equation describing the evolution of 
the amplitude density function on the T~ time scale : 

(~Bm M M 

#r ,  = amBm+ Z E 
m l = l  m 2 = l  h i =  oo 

" IS (k ,n ,m ,  m l , m 2 , n j ,  Tl ,  T2) (37) 

where I s is the steady part of the integral 

I1 = f ~  bBm~ (kl ,  n l )Bm~(k -k~ ,  n - n ~  ) e 'n~,,' dk l .  

It is worth noting that equation (37) is identical to 
equation (24). 

Equations (36) may be solved by using the method 
of eigenfunction expansion after substituting equation 
(37) into the right hand side. This yields the solution 
(33). However, the series (33) may converge slowly 
because, as noted earlier, a single eigenmode at first 
order may excite a large number of eigenmodes at 
second order through nonlinear interactions. In this 
section, the solution to the second order equations 
(36) is expressed in the form 

o =E E 
m I - - I  m 2 ] n I - -  a~  

"f~_~ Bm,(k~ , n l ) B m : ( k - k l  ~ n - - n ] )  

" U ~ ( m ~ , m z , k ~ , k - k ~ , n l , n - n ~ ,  r) 

• e-~["~, (~'"')+~'"',(~ ~ . . . .  ~)]' dkl ( 3 8 )  

where the functions 0~ =(hz,~,~z,0z)  are inde- 
pendent of the amplitude density function Bm and 
can be determined by solving the following system of 
equations : 

Oh2 + ~12 + in~2 + ik~'2 = O, 
F F 

L/(k, n, [J2 ,P2) -i[og,~, (k, ,n, ) + (o,,~_(k--k, ,n - n, )] U2, 

= - Mj(k ,  n, l~m, (kl ,  nl ,  r), l~m._(k-kl,  n - n l ,  r)) 
M 

+ Z bSl).,/• (39) 
m =  I 

Since the series solution (33) may converge slowly, 
it may be advantageous to solve the equations (37) 
directly using a numerical method. 

The disturbance field at third order is described by 
the equations 

in~s 
Dfi 3+u3  + +ik~; 3 = 0  

r r 

OC3j + Lj(k,  n, (J3, t63) 
Ot 

M ~B m ~ i,~, " 

= - L,= ~ U m z e  '--N3, ( 4 0 )  

where 
M M 

FvI] = I m 2 = 1 n I = ,'5, 

• Bm~(k~ ,n t )Bm~(k -k~ ,n -n j )  
oc 

" F i ( m l , m 2 , k l , k - - k l , n l , n - - n l , r )  

• e -~t , ,~(k , . , ,0+ , -~(k-k , .  ..... ,~l, dkt 

+E Z E 
rnl=l m2=] rn3=Inl=--~on2=--~ 

"f.f~Bm~(k,,/7,)Bm2(k2,n2) 

• B m , ( k - k l  - k 2 ,  n - n 1  - n 2 )  

• Gj(ml, m2, m3, kl, k2, k - k l  

- - k 2 ,  n l , / 7 2 ~ / 7 - - / 7 1  - / 7 2 ,  r )  

• e-i[,a~,(k,.n,)+,,,~(k2.n2)+~,~(k k, k2,n nt n2)l, dkl dk2 

where the inertial forcing functions Fj and @ depend 
on the linear stability eigenfunctions and the functions 
determined at second order. They are 

F j  = [am, ( k  i ,  n 1 ) - - F  a , . :  ( k 2 ,  n2)] ~2/, 

G ~ = 2D[t2m ~2] + 2 ~ ~ r [am, ~: - ~.~, v21 

i2n 
+ - -  [a,,, ~2 + ~7,,, h2] + i2k[am, ~v2 + if',,, h2] 

F 

M 

+ ~. b S [ h 2 ( m l , m , k , , k 2 + k 3 , n t , n 2 + n 3 , r )  
m = l  

+ ~2 (m, rnl , k 2 + k s, k l , n2 +ns,nt ,  r)] 
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2 ~ ~ 
G 2 = O[~tm,~:2-.[-~m~12]-- }- ~ [t4m V2-'}-Vm U2] 

i4n 
-~ - - / ~ m / ~  2 + i 2 k [ f f , .  ?v2 --~- l~m ~2] 

r 

M 

+ ~, b~[~2(ml,m, kl,kz+k3,nl,n2+n3,r) 
m = l  

+~2(m, ml,kz +k3,kj,nz +n3,nl,r)] 

G3 = D[a.,,ff2 +#.,,fi2] 

in 
r 
M 

b [w2(ml,m, kl,kz Wk3,nt,nz +n3,r ) 
m = l  

+ ~v2(m,m, ,i'c2 +k3,kl,n2 +n3,nl ,  r)], 

64 = O[~mlb2-~-0ml~2] 

+ 1_ [t~,,, 02 + 'gm~ fi2] + i2n[6m, 02 + Om I ~2] r 
M 

+ ~ b~[02(ml,m, kl,k2+k3,n,,n2+n3, r) 
m = l  

+02(m, mj,kz +k3,kl,n2 +n3,nl,r)]. 

Application of the Fredholm alternative theory yields 
an equation describing the evolution of the amplitude 
density function on the 7"2 time scale 

M M ~ 
~ g m  = 2 2 

• IS(k,n,m, ml,m2,nl, T,, T2) 

+E E Z 
m l = l  m 2 = l  m3=1  n l = - - o 2  n 2 = - - ~  

• IS(k,n, ml,m2,m3,nl,n2, Ti, T2) (41) 

where IS and I s denote the steady parts of the integrals 

12 = f ~  bB.,,(k,,n~)Bm:(k-kl,n-n~)e 'n3. dk~ 

and 

13=f~o~f~oocBm,(kl,nl)Bm2(k2,n2)Bm3 

• (k'-kl - k 2 ,  n - n j  - n2 )  e if~4'/dkl dk2. 

The interaction coefficients are /~ = (U~,F>, and 
= (U*m,G>. Equation (41) has a form similar to 

equation (29). However, the interaction coefficients/~ 
and ? in the integrals 12 and 13 are evaluated in terms 
of the eigenfunctic,ns 13% of the linearized equations 
(12) and the functions U2 are determined from the 
second order equat:ions (39). The coefficients/~ and ? in 
the integrals i2 and i3, on the other hand, are expressed 

only in terms eigenfunctions I~T m of linear stability 
theory. 

The equations (37) and (41) obtained at second and 
third orders respectively may be combined to yield a 
single equation for the evolution of the amplitude 
density function 

~Bm 
-amBm+ ~ ZlS(k ,n ,m,m, ,m2,n , ,T)  

8T m I ,m 2 I11 

+ Z ~ IS(k,n,m,m~,m2,m3,n,,nz, T) (42) 
m I ,m2,m 3 n I ,n 2 

where I s and I s are the steady parts of the integrals 

I4 = f~  [b+e[~]Bm,(k,, )t~m2 nl 

• ( k - k l ,  n - n l )  e in3'/dkl 

and 

15 = ~  f~ 8~Bm,(kl,n,)Bm2(k2,n2)Bm3 

• ( k - k l  - k 2 ,  n - n 1  - n 2 )  e/n''' dkl dk: 

respectively. Equation (42) is equivalent to the equa- 
tion (30) derived in Section 2.4.1. The amplitude den- 
sity function Bm is equivalent to the first order ampli- 
tude density function A~,I of Section 2.3. If  we 
consider only the interactions of the least stable eigen- 
modes for each wave-component, that is, if we set 
M = 1, equation (42) simplifies to 

0B, 
8T = a,B, +~IS(k,n,  l, 1, 1,n,, T) 

n 1 

+ ~ IS(k ,n , l , l , l , l ,n , ,nz ,  T). (43) 
n I ,n 2 

In the special case when ~Om R = 0, equation (43) reduces 
to the integro-differential equation for the amplitude 
density function of a continuous spectrum of station- 
ary waves derived previously by Yao and Ghosh 
Moulic [13]. 

2.4.3. Monochromatic waves and slowly-varying 
wavepackets. The equation (30) for the evolution of 
the amplitude density function of a continuous spec- 
trum contains as a special case the equation describing 
the evolution of the amplitude of a discrete mono- 
chromatic wave. The amplitude density function for 
a discrete wave with axial wavenumber k0 and azi- 
muthal wavenumber no may be expressed in the form 

A~,I (k, n, t) = [Ao(t)f(k-ko)6.,. ° 

+ A*(t)&(k +ko)g,_,o]6,,,~ (44) 

where &(k) represents the Dirac delta function, fi, j 
represents the Kronecker delta, and the asterisk 
denotes complex conjugates. We have retained only 
the least stable mode (m = 1) in the leading order 
amplitude density function expressed in equation (44). 
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Substitution of equation (44) into equation (30) leads 
to 

dA0 
dt = aoAo q-al IA012A0 (45) 

where a0 = o9] (ko,no) is the amplification rate pre- 
dicted by linear stability theory for the least stable 
eigenmode of the wavenumber (kono) and 

al = 6 (ko , -ko ,ko ,no , -no ,no ,  1, 1, 1, 1) 

+ 6 ( - k o , k o , k o , - n o , n o , n o ,  1, 1, 1, 1) 

+~(ko ,ko , -ko ,no ,  no , -no ,  1, 1, 1, 1) (46) 

is the second Landau constant. Equation (45) is the 
Landau equation describing the temporal evolution of 
the amplitude of a monochromatic wave [1]. Equation 
(30) for the evolution of the amplitude density func- 
tion of a continuous spectrum can also be reduced to 
a set of N ordinary differential equations describing 
the evolution of the amplitude of N discrete waves [35]. 

It is worth noting that, although equation (30) 
describes the temporal evolution of the amplitude den- 
sity function in wave space, the integral formulation 
does include spatial variations of the disturbances 
through the Fourier integral transform (4), and is 
not restricted to periodic disturbances. In the special 
case of a slowly-varying wavepacket, the Ginzburg- 
Landau equation, with an azimuthal wavenumber no, 
and a spectrum confined to a small neighbourhood of 
bandwidth 6 around the minimum critical wave- 
number kc, equation (4) becomes 

w'(r, c~, z, t) = ,4(kc, no, z, t)~, (kc, no, r) 

• e itko~+n0~-~(ko'"0)'l + c" c. (47) 

where 

I i  +6 
,'l(kc, no, z, t) = A ~ (k, no, t) 

e--6 

• e i (k -ko)z+ i [~ 'R(kc 'no) -~°~(k 'no) l t  dk 

= e d l (kc+eK,  no, t ) 
d -61~ 

• e i~Kz + ~[~(k~'~0)-'°~(ko+~K'~0)l' dK (48) 

is the slowly-varying envelope of the wavetrain and 
c'c.  denotes the complex conjugate. As in equation 
(44), we have retained only the least stable mode 
(m = 1) in equation (48). In order to derive an equa- 
tion for the envelope of the wavepacket, we multiply 
equation (30) by ei(k--k¢)z+it(°~(k~'n°)--°~f(k'n°)ltrn,not~m,l a n d  
integrate with respect to k from k c - 6  to k~+fi. We 
expand the linear amplification rates and frequencies 
in a Taylor series around k = kc : 

1 d2a k 2 
a(k, no) = a(k:,no)+ ~ - ~ ( k : , n o ) (  - k~)  + . . .  

(49) 

and 

R dc°R 
o.)R(k, n0) = co (kc, no)+ ~ - ( k c ,  n o ) ( k - k c ) + . . .  

It may be noted that, at the minimum critical wave- 
number ko, (da/dk)(kc, no) = 0. With equations (48) 
and (49), in the limit as e --* 0, it can be shown that 
equation (20) reduces to the equation describing the 
spatio-temporal evolution of a wavepacket derived by 
Stewartson and Stuart [3]: 

~2 ~ 
(~t + c g ~ ) . 4 =  aoA+a2t~z---yh+all,412A (50) 

where a2 =-½(d2a/dk2)(k~,no) and cg = (&oR/k) 
(kc, no) is the group velocity. In the special case 
when the group velocity is zero, equation (50) reduces 
to the equation for thermal convection derived by 
Newell and Whitehead [4] and Segel [5]. 

It is worth pointing out that there are no com- 
binations of wavenumbers involving only the waves 
+ k0, which form a resonant triad. Thus, in the above 
limiting cases of monochromatic waves, and wave- 
packets with one dominant wavenumber, there is no 
contribution from the integrals i s in equation (30). 
Also, the nonlinear term in equation (50) which leads 
to an exchange of energy among the wave components 
is identical to that for monochromatic waves in (45). 
This shows that there is no energy transfer among the 
wave components in a wavepacket. Equation (30), on 
the other hand, allows nonlinear exchange of energy 
among the wave components of a continuous band of 
waves with widely differing wavenumbers. The advan- 
tage of this formulation are that it is simpler than 
previous theories and contains information on tem- 
poral and spatial evolution of nonlinear, interacting 
monochromatic waves, wave trains, and waves of a 
continuous spectrum. 

Both the Landau equation and the Ginzburg- 
Landau equation assume that the deformation of the 
mean flow is at a smaller order than that of the domi- 
nant wave. Yao and Ghosh Moulic [13] demonstrated 
that a formulation without considering the leading- 
order effect of the mean-flow deformation fails to 
account for the proper energy exchange among the 
disturbance waves and the mean flow. 

3. RESULTS AND DISCUSSION 

The velocity and temperature distributions can be 
determined by integrating the amplitude density func- 
tion. The axial velocity component is given by 

w(r, d?, z, t) = Wo (r) + I:_ ~ ~, ~, 
oo n = - o o m =  1 

• Am(k, n, t)ff:m(k, n, r) e i(k~+n~) dk (51) 

where Am is the amplitude density function obtained 
by solving the set of  integro-differential equations 
(15). Similar expressions may be written for the other 
velocity components. The weakly nonlinear expansion 
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for the axial velocity component may be summarized 
in the form 

w(r, ~, z, t) 

= Wo (r) + s~- ~ 
m n 

• I ~ B,. (k, n, T1, T2) Wm (k, n, r) 
3 -  

2 "ei(kz+"6-~'k'n)0 dk + e2 m~m2 ~ , I~_o~ f_~ 

• Bm~(k,,n,, Tl, Tz)B , ,2 (k -k l ,n -n , ,  TI, T2) 

"~v2(mj ,m2 ,k l , k -k l ,n l ,n -n l , r )  

• e i k z + i n ( a - - i [ c o ~ ( ( k , , n l ) + o J ~ ( k - - k  t . . . .  0 l t  dka dk 

Z 

• B,,, (kl, n, )Bm~(k2, n2) 

• Bm~(k-kl -k2 ,  n-n1 -n2) 

~3(ml ,m2 ,m3 ,k l , k z , k -k l  

- k 2 ,  rt~, l'/2, n--r/1 --n2, r) 

eikZ+inf-i[w~, (k 'nO+°J~,(k2"n2)+wR~ (k-kl --k2'n--nl--n2)lt dkj dk 2 dk 

+ . . .  (52) 

where B,, is obtained by solving the set of integro- 
differential equations (42). 

Numerical results have been obtained for an annu- 
lus with a radius ratio r /=  0.375, Re = 1000, Pr = 6 
and three Rayleigh numbers Ra = 90, 100 and 200. 
The critical Rayleigh number at the onset of instability 
for this flow configuration is Rao = 89 [10]. The critical 
wavenumber is k~ = 0.3. Linear stability analysis indi- 
cates that, at Ra = 200, the parallel basic flow is 
unstable to disturbances with wavenumbers lying 
between 0.23 and 1.13. The maximum amplification 
rate predicted by linear stability analysis at Ra = 200 
is e = 0.0043. The'values ofe at Ra = 100 and Ra = 90 
are 0.00048 and I).00031, respectively. The integro- 
differential equation (15) for the evolution of the 
amplitude density function was solved numerically 
using 20 terms in the eigenfunction expansion. Equa- 
tion (43) representing weakly nonlinear interactions 
among the least stable eigenmodes for each wave com- 
ponent of a conlinuous spectrum was also solved 
numerically. The integrals in equation (15) were dis- 
cretized by the trapezoidal rule using a uniform mesh 
size Ak = 0.25. The infinite range of integration was 
truncated to --3 ~< k ~< 3, which was found to be 
adequate as the kinetic energies of the high wave- 
number modes were negligible. The nonlinear terms 
in equation (15) were evaluated pseudospectrally 
using fast Fourier transforms. Aliasing errors result- 
ing from pseudospectral evaluation of the convolution 
sums were eliminated by padding using the two-third 

rule [12]. The computations were performed on the 
CRAY C-90 supercomputer at the Pittsburgh Super- 
computer Center. Within the range of selected flow 
parameters, the flow is linearly stable to asymmetric 
disturbances and no azimuthal modes were found to 
be excited in the direct numerical simulations [12]. In 
order to reduce the computer time, the computations 
presented in this section were done for the axi- 
symmetric case. 

The integro-differential equation (15) was solved 
with different initial conditions. Results for four initial 
conditions are presented in this section. In all cases, 
the final equilibrium state was found to be a mono- 
chromatic travelling wave with a single dominant 
mode with wavenumber kf and its superharmonics of 
smaller amplitudes. The phase speed c,,(k, n) for each 
eigenmode, defined by 

1 dr, .  
c,, k dt (53) 

was computed, where fl,~(k, n) is the phase angle given 
by equation (18). In the initial stages of the evolution 
of the waves, the wave amplitudes are small and non- 
linear effects are negligible. Thus, in the initial stages 
of the evolution, the phase speed of the different eigen- 
modes is close to the value CORm/k predicted by linear 
stability theory, as indicated by equation (18). The 
wave-speeds predicted by linear stability theory for 
different eigenmodes are tabulated for Ra = 90, 100 
and 200 in Tables 1-3, respectively. As indicated by 
the tables, there is a large variation in the linear wave- 
speeds of the different eigenmodes for the same wave- 
number. However, in all the cases presented in this 
section, the equilibrium wave-speeds of all the eigen- 
modes were found to be the same. Thus, the harmonics 
of the fundamental wave kf are phase-locked at equi- 
librium. The equilibrium wave-speeds C~q for four 
different equilibrium states are given in Table 4. The 
values of the equilibrium wave-speeds are close to 
the linear wave-speeds of the least stable eigenmodes. 
Thus, the wave-speeds of the least stable eigenmodes 
are modified only slightly by nonlinear effects. The 
wave-speeds of the higher eigenmodes, on the other 
hand, are modified substantially by nonlinear wave 
interactions. 

Figure 2(a) shows the results of a numerical solu- 
tion of the set of integro-differential equations (15) at 
Ra = 200 in which the initial disturbance consisted of 
a single dominant mode with wavenumber k = 0.75. 
The evolution of the kinetic energy of the dominant 
wave components is plotted in Fig. 2(a). For  axi- 
symmetric flow, the kinetic energy of the k th Fourier 
mode is given by 

f f : ° r [ l ~ l z - b l w l 2 ] d r k ~ O  

E(k, t) = " ' (54) 

l l i:° r[l Wo + ~,12 - W:ol k = O  
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Table h Wave-speeds for the different eigenmodes predicted by linear stability theory at 
Ra = 200 

m k = 0 . 5  k = 0 . 7 5  k = l  k = 1 . 5  

1 0.2201E+00 0.2136E+00 0.2112E+00 0.2123E+00 
2 0.1987E-01 0.1717E-01 0.1550E-01 0.1343E-01 
3 0.1889E+00 0.1942E+00 0.1976E+00 0.14lIE+00 
4 0.7381E-01 0.6203E-01 0.1418E+00 0.2015E+00 
5 0 .15lIE+00 0.1364E+00 0.5522E-01 0.4720E-01 
6 0.1105E+00 0.1554E+00 0.1628E+00 0.1739E+00 
7 0.1162E+00 0.9549E-01 0.8561E-01 0.7342E-01 
8 0.1285E+00 0.1350E+00 0.1459E+00 0.1558E+00 
9 0.1257E+00 0.1234E+00 0.1139E+00 0.9877E-01 

10 0.1191E+00 0.1221E+00 0.1274E+00 0.1399E+00 
11 0.1249E+00 0.1247E+00 0.1246E+00 0.1203E+00 
12 0.1248E+00 0.1247E+00 0.1246E+00 0.14lIE+00 
13 0.1094E+00 0.1105E+00 0.1115E+00 0.1079E+00 
14 0.1247E+00 0.1247E+00 0.1247E+00 0.1253E+00 
15 0.1245E+00 0.1245E+00 0.1244E+00 0.1243E+00 
16 0.1208E+00 0.1198E+00 0.1183E+00 0.1122E+00 
17 0.1244E+00 0.1244E+00 0.1244E+00 0.1240E+00 
18 0.1244E+00 0.1245E+00 0.1245E+00 0.1252E+00 
19 0.1245E+00 0.1246E+00 0.1248E+00 0.1185E+00 
20 0.1168E+00 0.1172E+00 0.1176E+00 0.1257E+00 

Table 2. Wave-speeds for the different eigenmodes 
predicted by linear stability theory at Ra = 100 

Table 3. Wave-speeds for the different eigenmodes 
predicted by linear stability theory at Ra = 90 

m k = 0.3 k = 0.6 m k = 0.3 k = 0.6 

1 0.3192E+00 0.3116E+00 1 0.3375E+00 0.3320E+00 
2 0.4932E-01 0.3918E-01 2 0.5390E-01 0.4286E-01 
3 0.2794E+00 0.2926E+00 3 0.2990E+00 0.3125E+00 
4 0.1628E+00 0.1280E+00 4 0.1773E+00 0.2682E+00 
5 0.2290E+00 0.2482E+00 5 0.2481E+00 0.2155E+00 
6 0.1725E+00 0.2014E+00 6 0.1841E+00 0.1391E+00 
7 0.2032E+00 0.2231E+00 7 0.2198E+00 0.2400E+00 
8 0.2063E+00 0.1836E+00 8 0.2219E+00 0.1996E+00 
9 0.2014E+00 0.2065E+00 9 0.2175E+00 0.2223E+00 

10 0.2064E+00 0.1953E+00 10 0.2223E+00 0.2082E+00 
11 0.2052E+00 0.2058E+00 11 0.2210E+00 0.2220E+00 
12 0.2052E+00 0.2051E+00 12 0.2209E+00 0.2208E+00 
13 0.1828E+00 0.1852E+00 13 0.1973E+00 0.2005E+00 
14 0.2050E+00 0.2051E+00 14 0.2207E+00 0.2209E+00 
15 0.2047E+00 0.2049E+00 15 0.2205E+00 0.2207E+00 
16 0.2026E+00 0.2010E+00 16 0.2186E+00 0.2169E+00 
17 0.2047E+00 0.2048E+00 17 0.2204E+00 0.2206E+00 
18 0.2047E+00 0.2048E+00 18 0.2204E+00 0.2206E+00 
19 0.2046E+00 0.2047E+00 19 0.2204E+00 0.2204E+00 
20 0.1938E+00 0.1944E+00 20 0.2090E+00 0.2097E+00 

Equa t ion  (54) accounts  for the energy in b o t h  modes  
+ k. The  kinetic energy of  the fully-developed flow is 
subtracted f rom the mean-f low kinetic energy in (54) 
so tha t  E(0, t) represents the kinetic energy associated 
with the mean  flow distort ion.  The mode  k = 0.75 
is linearly unstable ,  and  grows initially at  the rate 
predicted by l inear theory. Nonl inear  interact ions gen- 
erate the harmonics  of  the mode  k = 0.75 and  induce 
a mean  flow dis tor t ion (k = 0). As the ampl i tude  of  
the mode  k = 0.75 increases, nonl inear  effects become 
impor t an t  and  alter the growth  rate, causing the mode  
to decay and  eventually reach an  equil ibr ium state. 
The equi l ibr ium state is a monoch roma t i c  travelling 
wave in which the fundamenta l  mode  k = 0.75 

Table 4. Wave-speeds at equilibrium 

Ra 90 100 200 200 
kf 0.3 0.3 0.75 0.5 

C~ 0.3376 0.3213 0.2175 0.2239 

remains  the d o m i n a n t  mode,  while its super- 
harmonics ,  generated t h rough  non l inear  interact ion,  
have smaller amplitudes.  The  kinetic energy of  the 
th i rd  and  four th  ha rmonics  (k = 2.25 and  k = 3) are 
much  smaller t han  the energies o f  the fundamenta l  
mode  (k = 0.75) and  the second ha rmon ic  (k = 1.5), 
and  have not  been plot ted in Fig. 2(a). The kinetic 
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Fig. 2(a). Evolution of the kinetic energy of dominant waves 
with the initial disturbance at k = 0.75. - - ,  k = 0; ..... , 

k = 0 . 7 5 ;  . . . . . . . . .  k =  1.5. 
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Fig. 2(b). Evolution of the kinetic energy of the dominant 
waves with the initial disturbance at k = 0.25. - . . . . . . . .  , 

k = 0.25; . . . . .  , k =  0 . 5 ; - - , k  = 0. 

energy associated with the mean  flow dis tor t ion 
(k = 0) is higher  t han  the kinetic energy of  the funda-  
menta l  mode  k--= 0.75. This implies tha t  classical 
weakly nonl inear  theories, which assume a priori t ha t  
the order  of  magni tude  of  the mean  flow dis tor t ion is 
smaller than  tha t  of  the fundamenta l  wave, are no t  
valid. The  results of  a direct numerical  s imulat ion 
of  the t ime-dependent  Navie r -S tokes  equat ions  using 
the spectral  me thod  of  Four i e r -Chebychev  expan- 
sions s tar t ing with the same initial condi t ions  [12] are 
super imposed on  Fig. 2(a). The  difference in the two 
computa t ions  c a n n o t  be noticed in Fig. 2(a). This 
is expected since bo th  computa t ions  represent  exact 
solut ions of  the Navie r -S tokes  equations.  The  C P U  
time required for the numerical  solut ion of  the set of  
integrodifferential equat ions  (15) is, however,  only 
25% of  the C P U  tilme required for the direct numerical  
s imulat ion using; a Four i e r -Chebyshev  spectral  
me thod  for the cu:rrent two-dimensional  problem. Fo r  
a three-dimensional  p rob lem [36], the savings in C P U  
time is even moie  and  is a factor  of  six. The two 
compute r  codes were fully opt imized to take advan-  
tage of  the vector facilities on  the C R A Y  C-90 super- 
computer .  Thus,  the relative C P U  time for the two 
computa t ions  is a true indicat ion of  the computa t iona l  
efficiency of  the new algori thm. 

Figure 2(b) shows the results of  a numerical  solu- 
t ion of  the set of  integro-differential  equat ions  (15) at  
Ra = 200 starting: with  a single d o m i n a n t  mode  with 
wavenumber  k = 0.25 at t ime t = 0. The  mode  

0.029 

0.024 / ~  
oo,, / \ 
0.014 \ 

o.~ / Z~7~ 
- 0 . 0 0 1  . . ~ "  

- 0 . 0 0 ~  . . . .  ~ . . . .  ~ . . . .  L . . . .  ~ . . . .  

0 .6  0 .8  1 1 .2  1 .4  1 .6  

r 

Fig. 3. Axial velocity profiles. - - -  , Real part for 
k = 0.75 ; . . . . . . . . .  , imaginary for k = 0.75 ; k = 0. 

k = 0.25 is linearly unstable  at  Ra = 200 and  the 
weakly nonl inear  theory of  monoch roma t i c  waves 
predicts a supercritical equi l ibr ium state for  this mode.  
The present  computa t ion  shows tha t  this equi l ibr ium 
state is unstable.  The mode  k = 0.25 grows initially 
and  then decays to zero, while its ha rmonic  k = 0.25, 
excited th rough  nonl inear  wave interact ion,  grows 
and  reaches a supercritical equi l ibr ium state. This 
result is in agreement  with  the Eckhaus  and  Ben jamin -  
Feir  s ide-band instabil i ty [18]. The  results of  a direct 
numerical  s imulat ion of  the Navie r -S tokes  equat ions  
s tar t ing with the same initial condi t ions  [12] c a n n o t  
be dist inguished f rom the present  results in Fig. 2(b),  
as in the case of  Fig. 2(a). The results of  Fig. 2(a) 
and  (b) demons t ra te  tha t  the equi l ibr ium state of  the 
travelling waves is no t  unique,  bu t  depends on  the 
waveform of  the initial dis turbance.  

The velocity and  tempera ture  dis t r ibut ions  pre- 
dicted by the numerical  solut ion of  the set of  integro- 
differential equat ions  (15) and  the direct numerical  
s imulat ion of  the Navie r -S tokes  equat ions  for the 
equi l ibr ium state indicated in Fig. 2(a) are compared  
in Figs. 3 and  4. Figure 3 shows the equi l ibr ium radial  
shapes of  the axial velocity componen t s  ff:(k, n = 0, r) 
for the mean  flow dis tor t ion (k = 0) and  the funda-  
menta l  mode  k = 0.75, while Fig. 4 shows the cor- 
responding tempera ture  dis t r ibut ions O(k,n = 0, r). 
The results of  the two computa t ions  agree completely 
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Fig. 4. Temperature distribution. - . . . .  , Real part for 
k = 0.75 ; . . . . . . .  , imaginary for k = 0.75 ; , k = 0. 
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Table 5. Amplitudes of the different eigenmodes for 
Ra = 200 and k = 0.75 

m k = 0  k = 0 . 7 5  k =  1.5 

1 0.1357E-01 0.4490E-02 0.3805E-03 
2 0.6223E-02 0.3319E-05 0.1895E-06 
3 0.6223E-02 0.6987E-03 0.1659E-03 
4 0.9939E-02 0.1137E-03 0.7693E-03 
5 0.1728E-02 0.1133E-02 0.5586E-05 
6 0.6218E-03 0.7043E-03 0.3546E-03 
7 0.6233E - 03 0.7334E - 03 0.4494E- 04 
8 0.1509E-03 0.1341E-02 0.1398E-03 
9 0.5483E-04 0.1068E-02 0.1736E-03 

10 0.2816E-03 0.1401E-03 0.9486E-04 
11 0.4112E-04 0.1731E-03 0.2853E-03 
12 0.1055E-04 0.4329E-04 0.1156E-03 
13 0.7585E- 05 0.4539E- 04 0.3094E- 04 
14 0.5969E-05 0.7935E-05 0.1785E-03 
15 0.8982E-06 0.1828E-05 0.4256E-04 
16 0.1004E-05 0.3327E-04 0.3869E-04 
17 0.1176E-04 0.5766E-06 0.6972E-05 
18 0.8601E-06 0.3386E-07 0.8432E-06 
19 0.1291E-06 0.1443E-06 0.9646E-05 
20 0.1629E-06 0.2843E-05 0.5771E-06 

and  canno t  be dist inguished in the scale of  Figs. 3 
and  4. 

The equil ibr ium ampl i tudes  of  the eigenmodes,  
t~,,(k) = AkRm(k,n = 0), where R,,(k,n) = IAm(k,n)[ 
is the magni tude  of  the complex ampl i tude  density 
funct ion Am(k, n) are given in Table 5 for the equi- 
l ibr ium state indicated in Fig. 2(a) at  Ra = 200. Table 
5 shows tha t  ampl i tude  of  the least stable e igenmode 
(m = 1) for the fundamenta l  wave k = 0.75 is larger 
than  the ampli tudes of  the o ther  e igenmodes for 
k = 0.75. The ampli tudes  of  the different e igenmodes 
do not  decrease in magni tude  monotonica l ly  as m 
increases. For  instance, the ampl i tude  of  the 5th eigen- 
mode  (m = 5) for the fundamenta l  wave k = 0.75 is 

Table 6. Nonlinear terms for the different eigenmodes for 
Ra = 200 and k = 0.75 

m k = 0  k = 0 . 7 5  k =  1.5 

1 0.1674E-04 -0 .9466E-05  0.1141E-05 
2 0.1827E-04 0.1346E-07 0.1204E-08 
3 0.1827E-04 0.9212E-05 0.2070E-05 
4 0.5317E-04 0.1862E-05 0.1346E-04 
5 0.1757E-04 0.2538E-04 0.1380E-06 
6 0.1038E-04 0.1644E-04 0.1311E-04 
7 0.1189E-04 0.2102E-04 0.1871E-05 
8 0.3753E-05 0.4755E-04 0.6754E-05 
9 0.1904E-05 0.4583E-04 0.9962E-05 

10 0.1241E-04 0.7208E-05 0.5803E-05 
11 0.1901E-05 0.9794E-05 0.1956E-04 
12 0.6267E-06 0.3103E-05 0.9016E-05 
13 0.5627E-06 0.3569E-05 0.2434E-05 
14 0.4698E-06 0.7030E-06 0.1481E-04 
15 0.8140E-07 0.1956E-06 0.4349E-05 
16 0.1092E-06 0.3942E-05 0.4483E-05 
17 0.1449E-05 0.7322E-07 0.8563E-06 
18 0.1105E-06 0.5029E-08 0.1212E-06 
19 0.1934E-07 0.2480E-07 0.1674E-05 
20 0.2816E-07 0.5013E-06 0.1004E-06 

higher  than  the ampli tudes  of  the 2nd, 3rd and  4th  
eigenmodes. This may  be explained by referring to 
Table 6 which shows the nonl inear  terms for  the 
various eigenmodes. Table  6 lists the integrals 
Ir (k)  = AkPm(k,n = 0), where Ir (k)  is the integral 
representing energy t ransfer  th rough  nonl inear  inter- 
actions,  defined in equa t ion  (17). A glance at  Table 6 
reveals tha t  Pro(k) is negative for the first e igenmode 
of  the fundamenta l  wave k = 0.75 (which is linearly 
unstable) ,  and  positive for all the other  e igenmodes 
(which are linearly stable). Thus,  energy is t ransferred 
from the least stable e igenmode of  the fundamenta l  
wave k = 0.75 to the other  e igenmodes th rough  non-  
l inear interactions.  The nonl inear  term corresponding  
to the 5th e igenmode for k = 0.75 is higher  than  the 
cor responding  nonl inear  terms for the 2nd, 3rd and  
4th eigenmodes for k = 0.75. Thus,  more  energy is 
t ransferred to the 5th eigenmode,  causing it to have a 
higher  ampli tude.  It may be noted  tha t  classical 
weakly nonl inear  theories consider only the least 
stable e igenmode (m = 1) for the fundamenta l  wave 
at leading order. The ampli tudes  of  the o ther  eigen- 
modes  of  the fundamenta l  wave are assumed to be 
two orders of  magni tude  lower. However,  Table  5 
indicates tha t  the ampli tudes  of  the 5th, 8th and  9th 
eigenmodes for the fundamenta l  wave are of  the same 
magni tude  as the ampl i tude  of  the least stable mode.  
Thus,  the predict ion of  classical weakly nonl inear  
theories does not  agree with the exact solut ion at  
this Rayleigh number .  Table  5 also indicates tha t  the 
ampli tude of  the least stable e igenmode for  the mean  
flow dis tor t ion (k = 0) is higher  than  the ampl i tudes  
of  the higher  e igenmodes for k = 0. However,  the 
ampli tudes  of  the first five eigenmodes for the mean  
flow dis tor t ion are of  the same order  of  magni tude.  
In the case of  the second ha rmonic  (k = 1.5), the 
ampl i tude  of  the 4th  e igenmode is higher  t han  the 
least stable eigenmode. Thus,  the assumpt ion  tha t  the 
least stable e igenmode is the d o m i n a n t  e igenmode for 
all the waves is no t  valid for  this case. Table  7 shows 
the equi l ibr ium ampl i tude  of  the least stable mode,  
B~ (k) = ~AklB1 (k, n = 0)l, obta ined  by solving equa- 
t ion (43). As might  be ant ic ipated f rom the results in 
Table 5, the ampli tudes  of  the first e igenmode for the 
mean  flow dis tor t ion (k = 0) predicted by the two 
computa t ions  do not  agree. The ampl i tudes  of  the 
least stable mode  for the fundamenta l  wave k = 0.75 
predicted by the two computa t ions ,  however,  differ 
only by 13.3 %. 

Table 8 shows the ampl i tudes  of  the var ious eigen- 
modes  for the equi l ibr ium state shown in Fig. 2(b). 
The cor responding  nonl inear  terms are shown in 

Table 7. Amplitudes of least stable eigenmode for Ra = 200 
and k = 0.75 predicted by the weakly nonlinear formulation 

k 0 0.75 1.5 

/~l(k) 0.3471E-01 0.3892E--02 0.4396E-03 
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Table 8. Amplitudes of  the different eigenmodes for Table 11. Amplitudes of  the different eigenmodes for 
Ra = 200 and k = 0.25 Ra = 100 

m k = 0  k = 0 . 5  k = l  m k = 0  k = 0 . 3  k = 0 . 6  

1 0 .1078E-01  0.5596E--02 0 .1005E-02  1 0 .4498E-02  0 .2808E-02  0 .2172E-03  
2 0 .6516E-02  0 .1358E-04  0 .7699E-06  2 0 .2186E-02  0 .7416E-06  0 .2843E-07  
3 0 .6516E-02  0 .3368E-03  0 .8185E-03  3 0 .2186E-02  0 .5678E-04  0 .1283E-03  
4 0 .9105E-02  0 .4795E-03  0 .3209E-03  4 0 .2139E-02  0 .5499E-04  0 .2907E-05  
5 0 .1723E-02  0 .1364E-02  0 .2670E-04  5 0 .1766E-03  0 .6950E-04  0 .3235E-04  
6 0.5675E--03 0 .1975E-02  0 .3587E-03  6 0 .1126E-03  0 .4443E-  04 0 .2028E-04  
7 0.4829E--03 0.6819E--03 0 .1961E-03  7 0 .6997E-04  0 .5189E-04  0 .1013E-04  
8 0 .1635E-03  0.9276E--03 0 .7020E-04  8 0 .2145E-04  0 .1292E-04  0 .1999E-04  
9 0 .3080E-04  0.3743E--03 0 .5065E-03  9 0 .4160E-05  0 .1783E-04  0 .6593E-05  

10 0.3155E--03 0.2070E--03 0 .3535E-03  10 0 .3896E-04  0 .3883E-05  0 .6824E-05  
11 0.1914E--04 0.3555E--04 0 .5937E-04  11 0 .2224E-05  0 .6629E-06  0 .9856E-06  
12 0 .7851E-05  0.1044E--04 0 .8617E-04  12 0 .5400E-06  0 .1970E-06  0 .2501E-06  
13 0.4032E--05 0 .4293E-04  0 .1620E-04  13 0 .3262E-06  0 .2622E-05  0 .3327E-05  
14 0.3797E--05 0 .1773E-05  0 .1570E-04  14 0 .3756E-06  0 .8883E-08  0 .5294E-07  
15 0.3246E--06 0 .4192E-06  0 .3354E-05  15 0 .5166E-07  0 .1160E-07  0 .2127E-07  
16 0.4966E--06 0 .2273E-04  0 .1970E-04  16 0 .2441E-07  0.1250E--05 0.2173E--05 
17 0.7874E--05 0 .2217E-06  0 .6953E-06  17 0 .9859E-06  0,3021E--08 0.6756E--08 
18 0.4024E--06 0 .2808E-07  0 .4933E-07  18 0 .1894E-07  0.8179E--09 0.1637E--08 
19 0 .5556E-07  0 .3098E-07  0 .2303E-07  19 0 .3403E-08  0 .1228E-08  0.1166E--08 
20 0 .8655E-07  0 .3378E-05  0 .6783E-05  20 0 .4740E-08  0 .2404E-06  0 .9549E-06  

Table 9. Nonlinear terms for the different eigenmodes for 
Ra = 200 and k = 0.25 

m k = 0  k = 0 . 5  k =  1 

1 0.1325E-01  - 0 . 1 1 3 1 E - 0 4  - - 0 . 8 4 4 0 E - 0 6  
2 0 .1912E-04  0 .4243E-07  0.3782E--08 
3 0.1912E--04 0 ,3833E-05  0.1212E--04 
4 0 .4865E-04  - 0 .6023E-05  0.5694E--05 
5 0.1752E--04 0 .2817E-04  0.5190E--06 
6 0 .9469E-  ()5 0 .4107E-04  0.1027E--04 
7 0 .9208E-  05 0 .1789E-  04 0 .6520E-  05 
8 0 .4065E-05  0 .3056E-04  0 .2849E-05  
9 0 .1069E-05  0 .1676E-04  0 .2300E-04  

10 0 .1390E-04  0 .9339E-05  0 .1941E-04  
11 0 .8849E-  (16 0 .2063E-05  0 .3571E-05  
12 0 .4661E-06  0 .7629E-06  0 .6017E-05  
13 0 .2991E-06  0 .3376E-05  0 .1266E-05  
14 0 .2986E-06  0 .1590E-06  0 .1367E-05  
15 0 .2942E-07  0.4524E--07 0 .3546E-06  
16 0 .5398E-07  0.2705E--05 0 .2319E-05  
17 0 .9697E-06  0.2833E--07 0 .8752E-07  
18 0 .5168E-07  0.4192E--08 0 .7280E-08  
19 0 .8322E-08  0.5342E--08 0 .3948E-08  
20 0 .1496E-07  0 .5974E-06  0 .1191E-05  

Table 12. Nonlinear terms for the different eigenmodes for 
Ra = 100 

m k = 0  k = 0 . 3  k = 0 . 6  

1 0 .3456E-05  - 0 .6679E-06  0 .2216E-06  
2 0 .6752E-05  0 .3038E-08  0 .1880E-09  
3 0 .6752E-05  0 .5319E-06  0 .1524E-05  
4 0 .1109E-  04 0 .6834E-  06 0 .6372E-  07 
5 0 .1781E-05  0 .1176E-05  0 .7232E-06  
6 0 .1873E-05  0 .1031E-05  0 .4612E-06  
7 0 .1354E-05  0 .1241E-05  0 .3206E-06  
8 0 .5329E-06  0 .4309E-06  0 .6679E-06  
9 0 .1444E-06  0 .7557E-06  0 .2829E-06  

10 0 .1721E-05  0 .1752E-06  0 .3423E-06  
11 0 .1028E-06  0 .3874E-07  0 .5514E-07  
12 0 .3206E-07  0 .1446E-07  0 .1780E-07  
13 0 .2419E-07  0 .2052E-06  0 .2550E-06  
14 0 .2959E-07  0 .7994E-09  0 .4668E-08  
15 0 .4681E-08  0 .1255E-08  0 .2267E-08  
16 0 .2653E-08  0 .1491E-06  0 .2584E-06  
17 0 .1215E-06  0 .3867E-09  0 .8557E-09  
18 0 .2433E-08  0.1222E--09 0 .2428E-09  
19 0 .5099E-09  0 .2119E-09  0 .2001E-09  
20 0 .8193E-09  0 .4254E-07  0 .1680E-06  

T a b l e  9. T h e  ini t ia l  d i s t u r b a n c e  u s e d  in th is  c o m -  

p u t a t i o n  c o n s i s t e d  o f  a s ingle d o m i n a n t  m o d e  w i th  

w a v e n u m b e r  k = 0.25. T h i s  m o d e  d e c a y e d  a n d  its ha r -  

m o n i c  k = 0.5 b e c a m e  t he  d o m i n a n t  w a v e n u m b e r  in 

the  e q u i l i b r i u m  state .  T a b l e  10 s h o w s  the  cor -  

r e s p o n d i n g  resu l t s  p r ed i c t ed  by  e q u a t i o n  (43). In  the  

la t te r  c o m p u t a t i o n ,  the  init ial  m o d e  k = 0.25 

r e m a i n e d  the  d o m i n a n t  m o d e  in the  f inal  e q u i l i b r i u m  

s ta te .  T h u s ,  the  two  c o m p u t a t i o n s  do  n o t  agree  even  

qua l i t a t i ve ly  for  th i s  case.  

T a b l e s  11-13 s h o w  the  resu l t s  o f  c o m p u t a t i o n s  d o n e  

a t  a lower  R a y l e i g h  n u m b e r  Ra = 100 wi th  ini t ial  

Table 10. Amplitudes of  least stable eigenmode for Ra = 200 
and k = 0.25 predicted by the weakly nonlinear formulation 

k 0 0.25 0.5 

/~(k) 0 .4782E-01  0.7072E--02 0.3284E--02 

Table 13. Amplitudes of  least stable eigenmode for Ra = 100 
predicted by the weakly nonlinear formulation 

k 0 0.3 0.6 

/~l (k) 0 .2766E-  02 0 .2523E-  02 0 .3767E-  03 
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14. Amplitudes of the different eigenmodes for 
Ra = 90 

m k = 0 k = 0.3 k = 0.6 

l 0.3003E-03 0.6779E-03 0.1348E-04 
2 0.6671E-03 0.7655E-08 0.1100E-08 
3 0.7364E-03 0.1106E-05 0.6946E-05 
4 0.1388E-03 0.7318E-06 0.1852E-05 
5 0.9956E-05 0.7898E-06 0.9454E-06 
6 0.6901E-05 0.5734E-06 0.1073E-06 
7 0.4321E-05 0.6653E-06 0.5424E-06 
8 0.1250E-05 0.1908E-06 0.9596E-06 
9 0.2711E-06 0.2902E-06 0.5562E-06 

10 0.2225E-05 0.5848E-07 0.4356E-06 
11 0.1538E-06 0.1068E-07 0.6340E-07 
12 0.3224E-07 0.2844E-08 0.4877E-08 
13 0.2194E-07 0.4087E-07 0.2512E-06 
14 0.2747E-07 0.2944E- 10 0.1299E-08 
15 0.3478E-08 0.1886E-09 0.8276E-09 
16 0.1418E-08 0.1983E-07 0.1251E-06 
17 0.6012E-07 0.5279E- 10 0.3683E-09 
18 0.1108E-08 0.1745E- 10 0.7801E- 10 
19 0.1989E-09 0.2700E- 10 0.8881E- 10 
20 0.2692E- 09 0.3272E- 08 0.5811E-07 

Table 15. Nonlinear terms for the different eigenmodes for 
Ra = 90 

m k = 0 k = 0.3 k = 0.6 

1 0.2132E-06 - 0.1029E-07 0.2323E-07 
2 0.1986E-05 0.3405E- 10 0.7914E- 11 
3 0.2386E-05 0.1033E-07 0.8261E-07 
4 0.7172E-06 0.9721E-08 0.4267E-07 
5 0.1003E-06 0.1322E-07 0.2196E-07 
6 0.1148E-06 0.1349E-07 0.2516E-08 
7 0.8375E-07 0.1592E-07 0.1719E-07 
8 0.3105E-07 0.6336E-08 0.3349E-07 
9 0.9405E-08 0.1231E-07 0.2362E-07 

10 0.9833E-07 0.2631E-08 0.2206E-07 
11 0.7104E-08 0.6228E-09 0.3526E-08 
12 0.1914E-08 0.2085E-09 0.3454E-09 
13 0.1627E-08 0.3194E-08 0.1907E--07 
14 0.2164E--08 0.2647E- 11 0.1141E-09 
15 0.3152E-09 0.2040E- 10 0.8804E- 10 
16 0.1541E-09 0.2365E-08 0.1488E-07 
17 0.7407E- 08 0.6754E- 11 0.4657E- 10 
18 0.1424E-09 0.2607E- 11 0.1156E- 10 
19 0.2979E- 10 0.4657E- 11 0.1523E- 10 
20 0.4653E- 10 0.5788E-09 0.1022E-07 

condi t ions  consist ing of  a single dominan t  mode  with 
wavenumber  k = 0.3, which is the critical wave- 
number .  This mode  remained the dominan t  wave- 
n u m b e r  in the final equi l ibr ium state. Table  11 shows 
that  the least stable e igenmode for the fundamenta l  
wavenumber  k = 0.3 is indeed the d o m i n a n t  eigen- 
mode for this wave, as predicted by classical weakly 
nonl inear  theories ;  the ampl i tudes  of  the higher  
eigenmodes for k = 0.3 are much  smaller than  the 
ampli tude of  the first mode.  However,  the ampl i tude  
of  the least stable e igenmode for k = 0 is higher  than  
the ampl i tude  of  the least stable e igenmode for the 
fundamenta l  wave k = 0.3. Non l inea r  interact ions 
excite a n u m b e r  of eigenmodes for the mean  flow 
dis tor t ion (k = 0) and  the second harmonic  (k = 0.6), 
as indicated by Table 12. The weakly nonl inear  pre- 
diction for this case is shown in Table  13. The differ- 
ence between the ampli tudes  of  the least stable eig- 
enmode  for the fundamenta l  wave predicted by the 
two computa t ions  is 10.3% at this Rayleigh number .  
However,  the cor responding  ampli tudes  for k = 0 still 
do not  agree. 

Tables 14-16 present  the results ob ta ined  at 
Ra = 90 which is very close to the critical Rayleigh 
n u m b e r  Rac = 89. Table  14 shows tha t  the least stable 
e igenmode for the fundamenta l  wave k = 0.3 is the 
dominan t  e igenmode for this wave, as in the case 
of  Ra = 100. A glance at Table  16 reveals tha t  the 
predict ion of  the weakly nonl inear  computa t ion  for 
the ampl i tude  of  this e igenmode is within 2.3 % of  the 
result predicted by the numerical  solut ion of  equat ion  
(15). However,  the 2nd and  3rd eigenmodes for k = 0 
in this case have ampli tudes  higher  than  the ampli tude 
of  the least stable e igenmode for k = 0. 

Table  17 compares  the average Nussel t  numbers  
predicted by the numerical  solut ion of  equa t ion  (15) 

and  equat ions  (18) at  Ra = 90, 100 and  200. The 
average Nussel t  n u m b e r  is defined by 

'fl Nu = ~ Nuz dz 

where 2 = 27t/kf, kf is the wavenumber  of  the domi- 
nan t  wave in the final equi lbr ium state, Nuz = hd/k is 
the local Nussel t  number ,  k is the thermal  conduct ivi ty  
of  the fluid, h = qw/Tw- Tb is the local heat - t ransfer  
coefficient, qw and  Tw are the local heat-flux and  tem- 
perature  of  the inner  wall, respectively, and  Tb is the 
bulk  tempera ture  of  the fluid. The  Nussel t  numbers  
for different initial condi t ions  is presented in Table  
17. The wavenumber  of  the initial d is turbance  is 
denoted by kl in Table  17, and  the Nussel t  n u m b e r  
predicted by the weakly nonl inear  computa t ion  is 
denoted  by NUwNL. The Nussel t  numbers  predicted 
by the two computa t ions  are closer than  might  be 
expected from the detailed compar i son  of  the ampli-  
tudes for the various eigenmodes presented in Tables 

Table 16. Amplitudes of least stable eigenmode for Ra = 90 
predicted by the weakly nonlinear formulation 

k 0 0.3 0.6 

Bl(k) 0.2104E-03 0.6623E-03 0.2114E--04 

Table 17. Comparison of the Nusselt numbers predicted 
by the fully nonlinear numerical solution and the weakly 

nonlinear formulation 

Ra 90 100 200 200 
k i 0.3 0.3 0.75 0.25 

Nu 3.8322 3.9479 4.8132 4.7436 
NUwN~ 3.8324 3.9416 4.7322 4.7828 
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5-16. The maximum error in the prediction of the 
Nusselt number is 1.7% and occurs at Ra = 200. The 
Nusselt numbers predicted at Ra = 90 by the two 
computations differ only by 0.005%. This implies that 
the prediction of x~eakly nonlinear theories for global 
quantities such as the Nusselt number is quite good 
in a parameter range near the neutral curve of linear 
stability, although the details of the flow field pre- 
dicted by these theories do not agree with a numerical 
solution of the Navier-Stokes equations. Table 17 
also illustrates that the equilibrium Nusselt number 
is not a unique fimction of the dynamic similarity 
parameters. Table', 17 presents two possible equi- 
librium states of the flow at Ra = 200, with different 
Nusselt numbers. We did not carry out an exhaustive 
search for all possible equilibrium states to find the 
true uncertainty in the Nusselt number. From the few 
cases we computed, we found a 10% uncertainty in 
the Nusselt number at Ra = 200. 

4. CONCLUSIONS 

The integrodifferential equation (15) for the ampli- 
tude density function of a continuous spectrum has 
been shown to be equivalent to the Navier-Stokes 
equations. The equation (15) has been approximated 
by a perturbation expansion with multiple time scales. 
This yields equation (43), which describes the weakly 
nonlinear interactions among the wave components 
of a continuous spectrum of travelling waves. The 
perturbation expansion demonstrates that the impor- 
tant cases of monochromatic waves and wavepackets 
are special limiting cases of the integro-differential 
equation (43). 

The Ginzburg-l_,andau equation of classical weakly 
nonlinear theories describing the evolution of the 
envelope of slow}y-varying wavepackets, which is 
often used to study spatio-temporal chaos, is shown to 
be valid only locally near the onset of linear instability. 
This implies that chaotic solutions of this equation 
may not have physical relevance in a parameter range 
which is far from the neutral curve of linear stability. 
Furthermore, the ,;olutions of this equation can only 
describe a slow spatial modulation of a periodic fluid 
motion with a single dominant wavenumber, and is 
incapable of describing chaotic fluid motion with a 
general spatial variation. On the other hand, solutions 
of the integro-differential equation (15) are valid for 
all parameters, include full spectra and can describe 
chaotic fluid motions properly. 

Numerical resuhs demonstrate that linearization in 
the weakly nonlinear instability theories is a good 
approximation since the values of amplitude functions 
are usually very small. However, using only one 
eigenfunction, associated with the least stable or most 
unstable eigenvalue, in the expansion of weakly non- 
linear theories is insufficient. This is because that 
energy is transfered nonlinearly into higher 
eigenmodes to bahmce out the larger dissipation rate, 

associated with the larger value of ~O~m. One may vis- 
ualize intuitively that eigenfunctions represent eddies 
of different sizes along r directions. The higher 
eigenmodes correspond to eddies of smaller sizes 
which have larger dissipation rates. We found the 
numerical results diverge due to lack of dissipation 
when number of eigenmodes used in the expansion is 
too small. The numerical solution of equation (43) 
requires the evaluation of two integrals. The first inte- 
gral involves a quadratic nonlinearity, while the 
second involves a cubic nonlinearity. The solution of 
equation (15), on the other hand, requires the evalu- 
ation of only one integral involving a quadratic non- 
linearity. For the same accuracy the weakly nonlinear 
theories require, at least, double storage and CPU 
time than a direct solution of the nonlinear formu- 
lation, (15). Moreover, the numerical solution of 
equation (15) is an exact solution of the Navie~ 
Stokes equations. Thus, from computational point of 
view, it is preferable to solve equations (15) directly. 

The eigenfunction expansion used in the current 
formulation requires only one amplitude density func- 
tion for the all dependent variables, such as velocity 
components and temperature. This substantially sim- 
plifies the final form of the governing equations (15). 
Therefore, the required CPU time to solve the integro- 
differential equations is much less than a spectral 
method employing Fourier-Chebyshev functions, or 
other functions in solving the Navier-Stokes equa- 
tions. The current formulation provides a new efficient 
algorithm for the solution of the Navier-Stokes equa- 
tions, and can be used for the direct simulation of 
turbulent flows which are homogeneous in two direc- 
tions. The extension of the formulation to fluid 
dynamical problems without this limitation is 
straightforward. 

Another interesting result is that the equilibrium 
state of the mean flow and the wave components is not 
unique after the first bifurcation point, but depends on 
the waveform of the initial disturbance. This may 
imply that time-averaged turbulent mean flows do not 
have to be unique for a given value of the dynamic 
similarity parameters, such as the Reynolds number. 
Consequently, the ergodic hypothesis does not hold. 
Thus, the values of time-averaged turbulent statistical 
quantities are not necessarily equal to the ensemble 
average even for stationary turbulence. The ensemble 
average would be the averaged value of the all possible 
time averages which can be measured independently. 
From an application point of view, only time average 
has physical significance. 
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